Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мат Анал.docx
Скачиваний:
15
Добавлен:
15.04.2019
Размер:
464.93 Кб
Скачать

24)Теорема Ферма.

Теорема утверждает, что:

Для любого натурального числа n > 2уравнение

не имеет натуральных решений ab и c.

25)Теорема Ролля.

Теорема Ро́лля (теорема о нуле производной) утверждает, что Если функция непрерывна на отрезке [a;b] и дифференцируема на интервале (a;b), принимает на концах этого интервала одинаковые значения, то на этом интервале найдётся хотя бы одна точка, в которой производная функции равна нулю.

26)Теорема Лагранжа.

Формула конечных приращений или теорема Лагра́нжа о среднем значении утверждает, что если функция f непрерывна на отрезке[a;b] и дифференцируема в интервале (a;b), то найдётся такая точка  , что

.

Геометрически это можно переформулировать так: на отрезке [a;b] найдётся точка, в которой касательная параллельна хорде, проходящей через точки графика, соответствующие концам отрезка.

Механическое истолкование: Пусть f(t) — расстояние точки в момент t от начального положения. Тогда f(b) − f(a) есть путь, пройденный с момента t = a до момента t = b, отношение   — средняя скорость за этот промежуток.

27)Теорема Коши.

Пусть функции f(x) и g(x)

  1. непрерывны на отрезке [ab];

  2. дифференцируемы в интервале (ab);

  3. f '(c)

    g '(c)

    "x О (abg'(x) ≠ 0 .

f

=

(b) − f(a)

g(b) − g(a)

Тогда существует точка c О (ab) такая, что

 

 

    

 

28)Правило Лопиталя.

Правило Лопита́ля — метод нахождения пределов функций, раскрывающий неопределённости вида 0 / 0 и  . Обосновывающая метод теорема утверждает, что при некоторых условиях предел отношения функций равен пределу отношения их производных.

Условия:

  1.  или  ;

  2.  и   дифференцируемы в проколотой окрестности  ;

  3.  в проколотой окрестности  ;

  4. существует  ,

тогда существует  .

Пределы также могут быть односторонними.

29)Формулы Тейлора и Маклорена.

Если функция f (x) имеет непрерывные производные вплоть до (n+1)-го порядка, то ее можно разложить в степенной ряд по формуле Тейлора:

где Rn − остаточный член в форме Лагранжа определяется выражением

Если приведенное разложение сходится в некотором интервале x, т.е.  , то оно называется рядом Тейлора, представляющим разложение функции f (x) в точке a.  Если a = 0, то такое разложение называется рядом Маклорена:

30)Разложение функций в ряд Маклорена.

31)Возрастание и убывание функции.

Определение 1. Функция f(x) называется возрастающей в интервале (a,b), если при возрастании аргумента x в этом интервале соответствующие значения функции f(x) также возрастают, т.е. если

f(x2) > f(x1) при x2 > x1.

 Из этого определения следует, что у возрастающей в интервале (a,b) функции f(x) в любой точке этого интервала приращения Dx и Dy имеют одинаковые знаки.

Определение 2. Функция f (x) называется убывающей в интервале ( a, b ) если при возрастании аргумента x в этом интервале соответствующие значения функции f (x) убывают, т.е. если

f(x2) < f(x1) при x2 > x1.

  Из этого определения следует, что у убывающей в интервале ( a, b ) функции f (x) в любой точке этого интервала приращения Dx и Dy имеют разные знаки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]