
- •Модуль числа
- •Предел чп. Теоремы о пределах.
- •Понятие функции. Предел функции в точке.
- •9,11)Непрерывность функции в точке, интервале и отрезке и их св-ва.
- •10)Точки разрыва и их классификация.
- •12)Понятие производной.
- •15)Правила дифференцирования.
- •16)Производные сложных функций.
- •17)Таблица производных.
- •18)Производные сложных функций
- •19)Дифференцирование функций заданных неясно.
- •24)Теорема Ферма.
- •25)Теорема Ролля.
- •26)Теорема Лагранжа.
- •27)Теорема Коши.
- •28)Правило Лопиталя.
- •29)Формулы Тейлора и Маклорена.
- •30)Разложение функций в ряд Маклорена.
- •31)Возрастание и убывание функции.
- •32)Экстремумы Функции.
- •33,34)Точки перегиба.
- •Вертикальная
- •Горизонтальная
- •Наклонная
- •35)Схема исследования функции.
- •36)Понятие первообразной и неопределённого интеграла.
- •37)Свойства неопределённого интеграла.
- •38)Таблица интегралов.
- •39)Формулы замены переменной и интегрирования по частям.
- •46)Интегрирование иррациональных Функций.
- •47)Интегрирование Тригонометрических Функций.
- •48,49)Определённый интеграл.
- •50)Интеграл с переменным верхним пределом.
- •60)Предел и непрерывность фнп.
- •62)Производная сложной фнп.
- •Связь с градиентом
- •65)Понятие экстремума фнп. Необходимое условие экстремума фнп.
- •67)Понятие числового ряда и его сходимости.
- •68)Необходимое условие сходимости числового ряда.
- •70)Признаки сходимости знакоположительных числовых рядов.
- •71)Абсолютная и условная сходимость знакопеременных числовых рядов.
- •72)Степенные ряды. Радиус и интервал сходимости степенного ряда.
- •74)Дифференциальные уравнения первого порядка.
- •75)Уравнения с разделяющимися переменными и их решение.
- •76)Задача Коши для дифференциального уравнения первого порядка.
74)Дифференциальные уравнения первого порядка.
Дифференциальным уравнением называется уравнение, связывающее между собой независимые переменные, их функцию и производные (или дифференциалы) этой функции.
Порядок старшей производной, входящей в данное дифференциальное уравнение, называется порядком этого уравнения.
Таким образом общий вид дифференциального уравнения n-го порядка следующий
,
(7,4)
где F –
некоторая функция от
переменных
, x –
независимая переменная, а
–
функция от x.
Причем в частных случаях в это уравнение
могут не входить
и
отдельные производные порядка ниже
чем n.
Решением дифференциального
уравнения (7,4) называется такая
дифференцируемая функция
,
которая при подстановке ее в это
уравнение, обращает его в тождество.
Задача о нахождении решения некоторого дифференциального уравнения называется задачей интегрирования данного дифференциального уравнения. График решения дифференциального уравнения называется интегральной кривой.
Общим
решением дифференциального
уравнения (7,4)
-го
порядка называется такое его решение
,
(7,5)
которое
является функцией переменной
и
произвольных
независимых постоянных
.
(Независимость постоянных означает
отсутствие каких-либо соотношений между
ними). Если общее решение задано в неявном
виде
,
то его называют общим интегралом.
75)Уравнения с разделяющимися переменными и их решение.
Уравнением с разделенными переменными называется дифференциальное уравнение вида
f(x)dx + g(y)dy = 0
с непрерывными функциями f(х) и g(y).
Равенство
где C — произвольная постоянная, определяет общий интеграл уравнения с разделёнными переменными.
Начальное условие для уравнения f(x)dx + g(y)dy = 0 можно задавать в виде y(x0) = y0 или в виде x(y0) = x0 .
Уравнением с разделяющимися переменными называется дифференциальное уравнение вида
f1(x)g1 (y)dx + f2(x) g2(y)dy =0 .
Функции f1(x), g1(y), f2(x), g2(y) непрерывны в cвоих областях определения и g1(y)f2(x) ≠ 0 .
Разделив обе части уравнения на отличное от нуля произведение g1(y)f2(x), получим уравнение с разделенными переменными
Общий интеграл этого уравнения имеет вид
Решение уравнения в области, где g1(y)f2(x) = 0 требует специального обсуждения.
76)Задача Коши для дифференциального уравнения первого порядка.
Если поставить задачу: найти решение, удовлетворяющее условию y(x0)=y0, то при определенных условиях такая задача имеет единственное решение. Задача об отыскании решения y=y(x) дифференциального уравнения y'=f(x, y), удовлетворяющего начальному условию y(x0)=y0, называется задачей Коши. Решение задачи Коши называютчастным решением.
Справедлива следующая теорема существования и единственности решения задачи Коши.
Если функция f(x, y) и ее частная производная по y непрерывны в области D, (x0, y0)ОD, то на некотором интервале (x0-h, y0+h) существует единственное решение y=y(x) уравненияy'=f(x, y), удовлетворяющее начальному условию y(x0)=y0.
Теорема существования и единственности имеет простую геометрическую интерпретацию: если условия теоремы выполнены в области D, то через каждую точку (x0, y0)ОD проходит только одна интегральная кривая y=y(x,C0) семейства y=y(x,C) такая, что y(x0,C0)=y0.