Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзамен по ФЭМП.doc
Скачиваний:
101
Добавлен:
15.04.2019
Размер:
1.73 Mб
Скачать
  1. Понятие отношений. Виды отношений. Свойства отношений.

Отношения между множествами

Множества изображаются на плоскости с помощью кругов Эйлера.

1. Отношение равенства

Говорят, что А=В, если все элементы множества А принадлежат множеству В и наоборот, все элементы множества В принадлежат множеству А.

Ни количество элементов, ни порядок их следования не имеет значения для равенства множества.

Пример: А={1; 2} и В={1, 2, 2, 1}, А=В.

2. Отношение включения

Говорят, что множество А включено (Ì ) в В, если все элементы множества А принадлежат В.

В этом случае множество А будем называть подмножеством В.

Если А={1, 2}, В={1, 2, 3}, то АÌВ.

Если А - студенты дошфака, В - студенты университета, то АÌВ.

3. Отношение пересечения

Говорят, что множества А и В пересекаются, если имеют хотя бы один общий элемент.

Например, А={1, 2, 3} и В={2, 4, 6} , А и В - пересекаются.

А В

4. Если АÇВ=Æ, то множества А и В не пересекаются. Например, студенты 1 и 5 курсов – не пересекающиеся множества.

Отношения между элементами множества. Свойства отношений

Примеры отношений:

– между числами: =, >, <

– между прямыми в пространстве: ||, ^.

– пространственные отношения между предметами: слева, справа, далеко, близко;

– родственные отношения между людьми: быть братом.

Рассмотрим определение отношения на примере. Зададим отношение «Город а стоит на реке в». Для этого зададим следующие множества: А – множество городов, А= {Б, К, Г}; В – множество рек, В = {М, Д, С}.

Найдем декартово произведение множества А на В.

А ´ В = {(Б,М); (Б,Д); (Б,С); (К, М); (К, Д); (К,С); (Г, М); (Г,Д); (Г,С)}.

Теперь найдем такое подмножество декартового произведения, где на первом месте в паре стоит горд, а на втором – река, на которой этот город расположен.

Р = { (Б; М); (К; Д); (Г,С) }, Р Ì А ´ В.

Для того, чтобы задать отношение между городами и реками «Город а стоит на реке в» необходимо задать 3 множества: множество городов, множество рек и подмножество декартового произведения А на В.

Другие примеры: сетка занятий в д/с; график дежурств.

Определение: Говорят, что между элементами множеств А и В задано отношение a, если заданы 3 множества А, В, Р Ì А ´ В.

Способы задания отношений

1) Путем перечисления всех элементов отношения (т.е. всех пар).

Рассмотрим множество А = {1, 2, 3, 4}. Зададим отношение «<». Первый элемент в парах должен быть меньше второго. Р = {(1;2), (1;3), (1;4), (2;3), (2;4), (3;4) }.

2) Путем задания характеристического свойства. Характеристическое свойство имеет вид предложения с 2-мя неизвестными. «Число х меньше числа у»

3) С помощью графа. Граф – это изображение элементов множества на плоскости с помощью точек и изображение отношений между элементами множеств с помощью стрелок.

4) С помощью графика в декартовой системе координат, где 1-ый элемент - абсциссы, 2-ой – ординаты.

Свойства отношений.

Свойство рефлексивности. Отношение a на множестве Х называется рефлексивным, если каждый элемент х из множества Х находится в отношении a с самим собой, т.е. х a х.

Например: В качестве Х рассмотрим множество фигур. В качестве отношения ? рассмотрим отношение «быть одинаковым по форме». Каждая фигура одинакова по форме сама с собой - это утверждение истинно. Значит отношение «быть одинаковым по форме» на множестве всех фигур является рефлексивным.

1. Свойство антирефлексивности. Отношение ? на множестве Х называется антирефлексивным, если каждый элемент х из множества Х не находятся в отношении ? с самим собой, х ? х.

«Каждое число не меньше самого себя». Утверждение истинное. Следовательно, отношение «меньше» на множестве чисел является антирефлексивным.

2. Свойство симметричности. Отношение ? на множестве х называется симметричным, если для любых элементов х, у из множества Х справедливо: если х находится в отношении ? с у, то у находится в отношении ? с х т.е. если х ? у, то у ? х.

Например: Если фигура а одинакова по форме с фигурой в, то фигура в одинакова по форме с фигурой а. Вывод: утверждение справедливо. Значит, отношение «быть одинаковым по форме» является симметричным на множестве фигур.

Свойство антисимметричности. Отношение a на множестве Х называется антисимметричным, если для " не равных друг другу элементов из множества Х справедливо утверждение: Если х a у, то у a х.

Например: отношение «меньше» на множестве чисел, а¹в.

«Если а<в, то в>а» - истинно, значит, отношение «меньше» является антисимметричным на множестве чисел.

Свойство транзитивности. Отношение a на множестве Х называется транзитивным, если для " элементов х, у, z множества Х справедливо утверждение: если х a у, у a z, то х a z.

Например, «если фигура а одинакова по форме с фигурой в, и фигура в одинакова по форме с фигурой с, то фигура а одинакова по форме с фигурой с» - справедливо. Значит, отношение «быть одинаковым по форме» является транзитивным