
- •Биофизика (бф), как самостоятельная научная дисциплина. Предмет и задачи.
- •Биологические и физические процессы и закономерности в живых системах. Редукционизм и антиредукцианизм. Принцип качественной несводимости.
- •Основные направления развития современной биофизики. Уровни биофизических исследований.
- •Классификация тд систем; особенности живых организмов, как тд систем.
- •6. Характеристика тд функций, применяемых для анализа биолог процессов.
- •7. Внутренняя энергия, теплота и работа, как тд функции.
- •Первый закон тд в биологии; доказательства его применимости к живым системам. Своеобразие проявления первого закона тд в биосистемах.
- •Характеристика энтальпии системы как функция состояния. Тепловой эффект процесса.
- •Закон Гесса, его применимость к биопроцессам. Следствие закона Гесса, его практическое значение.
- •Формулировка второго закона тд. Своеобразие его проявления в биосистемах.
- •Энтропия как функция состояния системы. Связь энтропии с тд вероятностью состояния системы.
- •Уравнение второго закона тд. Понятие свободной и связанной энергии.
- •Доказательства применимости второго закона тд к биосистемам.
- •Теория Онзагера. Гетерогенность энтропии в биосистемах. Уравнение второго закона тд для открытых систем.
- •Теорема Пригожина и направленность эволюции биосистем. Энтропия и биологический прогресс.
- •Организм и клетка как химическая машина. Химический потенциал живой системы.
- •Критерии спонтанности, самопроизвольности протекания процессов в тд системах.
- •Применение тд в биологии: методы расчёта стандартной и реальной свободной энергии биохимических процессов. Свободная энергия Гиббса и Гельмгольца.
- •Потенциал переноса атомных группировок в различных трансферазных реакциях.
- •Понятие макроэргической связи. Характеристика атф как универсального аккумулятора энергии в биосистемах.
- •Причины высоких значений потенциала переноса при гидролизе ди- и полифосфатов. Разнообразие макроэргических соединений в биосистемах.
- •Типы энергетического обмена в биосистемах
- •Типы аккумуляции и пути расходования энергии в биосистемах. Тд сопряжение экзэргонической и эндэргонической стадии биопроцессов; примеры.
- •Тд характеристика анаэробного распада глюкозы. Расчёт кпд.
- •Тд характеристика окисления пировиноградной кислоты в цикле Кребса. Расчёт кпд.
- •Этапы уницикации энергетических субстратов в процессах катаболизма.
- •Современное представление о строении и переносе электронов в дыхательной цепи митохондрий.
- •Современные представления о механизме сопряжения окисления и фосфорилирования в биосистемах.
- •Разнообразие механизмов образование атф и их вклад в энергетику клетки.
- •Различные типы электрон-транспортных путей в живых организмах. Их роль в биоэнергетике клетки.
- •Биофизика фотосинтеза: физическая и физико-химическая стадии, квантовый выход. Расчёт кпд.
- •36. Элементарные кинетические уравнения. Скорость реакции. Константа равновесия обратимой реакции.
- •37. Факторы, определяющие скорость реакций биологических процессов.
- •38. Зависимость скорости реакции от концентраций реагирующих веществ. Молекулярность реакций. Порядок реакций.
- •39. Различия скоростей превращения вещества в реакциях различного порядка.
- •40 Особенности кинетики биологических процессов. Кинет последовательно- и параллельно-протекающих реакций в многостадийном процессе.
- •41.Принцип обратной связи и лимитирующего звена (определяющей реакции) и их роль в регуляции скоростей протекания биологических процессов.
- •42 Зависимость скорости процесса от температуры. Анализ ур-ия Аррениуса.
- •43.Энергия активации реакции (процесса). Экспериментальной определение величины энергии активации.(см №42 тоже)
- •44 Особенности кинетики ферментативных реакций. Понятие об активности ферментов. Единицы измерения активности и количества ферментов.
- •45/ Основные положения теории ферментативной кинетики и общей теории механизма действия ферментов.
- •46/ Вывод и анализ уравнения Михаэлиса-Ментен для односубстратной ферментативной реакции.
- •47 Графическии анализ результатов кинетического исследования ферментативной реакции (v0 число "оборотов", Vmах,Кm).
- •48.Физический смысл основных кинетических характеристик ферментативной реакции (Vmax, Кm).
- •49/ Использование уравнения Лайнуивера-Берка для определения кинетических характеристик ферментативной реакции.
- •50/Кинетика ингибирования ферментативных реакций. Обратимое и необратимое ингибирование. Типы обратимого ингибирования.
- •51. Графический анализ конкурентного ингибирования по уравнению Лайнуивера-Берка
- •52. Графический анализ неконкурентного ингибирования по уравнению Лайнуивера-Берка
- •54 Предмет, задачи молекул.Биофизики. Методы исследования
- •55 Биополимеры как основа организации биоструктур, особенности строения, функции
- •56Типы взаимодействия в биополимерах
- •57Факторы стабильности пространственной структуры биологических макромолекул
- •58 Биофизика белков: строение полипептидной цепи, разнообразие типов пространственной структуры молекул
- •59 Физические свойства белков , денатурация, ренатурация. Биороль
- •60 Биофизика нуклеиновых кислот (нк):строение полипептидной цепи, особенности пространственной сьруктуры
- •61 Физические модели нуклеиновых кислот(нк), методы изучения днк и рнк
- •62 Физич. Свойства нк. Денатурация, ренатурация: механизм, качеств. И количеств характеристика, биологич. Роль. Метод молеклярной гибридизации.
- •63 Осмотическое давление биол. Жидкостей, его измерение; влияние поверхностной активности веществ на величину поверхностного натяжения, биологическая роль.
- •64. Поверхностное натяжение воды и биологических жидкостей, его измерение; влияние поверхностно активных веществ на величину поверхностного натяжения; биологическая роль.
- •65. Развитие представлений о строении биомембран; типы моделей мембран, их научное значение.
- •66.Биофизическая характеристика молекулярных компонентов мембран: белков, липидов, углеводов и их комплексов.
- •67.Вода как составной компонент биомембран: структура, свойства, биологическая роль.
- •68.Типы межмолек улярных взаимодействий в мембранах, их природа и роль в стабилизации мембранных структур.
- •69.Физические свойства биомембран. Подвижность компонентов мембраны (вращательное движение, латеральная и вертикальная диффузия).
- •70. Фазовые переходы в мембранах; факторы, инициирующие фазовые переходы мембран. Жидкие кристаллы в структуре мембран, их свойства.
- •71. Биофизическая характеристика мембранных липидов: строение, свойства, классификация
- •72.Искусственные мембраны, их строение, классификация, теоретическое и практическое значение. Отличие от природных мембран.
- •73. Монослой на границе раздела фаз. Липосомы и протеолипосомы. Бислойные липидные мембраны.
- •74. Проблема проницаемости и транспорта веществ через биомембраны. Методы исследования проницаемости.
- •75. Классификация и краткая характеристика типов транспорта веществ через биомембраны.
- •76. Диффузия как тип транспорта веществ через биомембраны; скорость и движущие силы диффузии. Закон Фика.
- •77. Проницаемость клеток для воды, электролитов и неэлектролитов. Физиологическая роль и практическое значение диффузии.
- •78. Облегченная диффузия и транслокация радикалов как типы транспорта веществ через биомембраны; движущие силы, механизмы, биологическая роль.
- •79.Активный транспорт молекул и ионов через биомембраны, его характеристика, свойства и функции.
- •80. Сходcтва и отличия активного транспорта и облегченной диффузии веществ через биомембраны. Доказательства наличия активного транспора в условиях in vitro.
- •81. Транспортные атф-азы, их классификация и роль в активном транспорте ионов. Представление о бионасосах.
- •82. Транспорт ионов кальция через биомембраны, его механизмы, регуляция и биологическая роль
- •83. Биоэлектрические явления: общая характеристика, классификация
- •84. Механизм возникновения электродных и ионных биопотенциалов, их измерение. Формула Нернста.
- •85. Мембранный потенциал и факторы, определяющие его величину.Передача нервного импульса по миелиновым и немиелиновым нервным волокнам.
- •86. Электрокинетический потенциал: возникновение, измерение и факторы, определяющие его величину. Примеры электрокинетических явлений, их характеристика и научно-практическое значение.
- •87. Общая характеристика механохимических процессов. Основные типы сократительных и подвижных систем.
- •88.Биофизическая характеристика мышечных и немышечных сократительных белков.
- •89.Основные характеристики поперечно-полосатой мышцы как механического преобразователя энергии; структура саркомеров, ее изменение при мышечном сокращении.
- •90.Молекулярные механизмы мышечного сокращения, его регуляция.
- •Биофизика (бф), как самостоятельная научная дисциплина. Предмет и задачи.
- •Биологические и физические процессы и закономерности в живых системах. Редукционизм и антиредукцианизм. Принцип качественной несводимости.
81. Транспортные атф-азы, их классификация и роль в активном транспорте ионов. Представление о бионасосах.
Активный транспорт. Перенос вещества против концентрационного градиента (из места с меньшим ц в место с большим µ). При этом происходит возрастание свободной энергии>процесс самопроизвольно протекать не может, необходима затрата Е.
Е может быть:
1. макроэргические связи АТФ.
2. ЕОВР реакций
3. Градиент концентрации иона, который при вторичном активном транспорте (симпорте), переносится через мембрану
Активный транспорт:1. Первичный.
В его синтез входят 3 насоса, переносящие ионы против градиента концентрации при помощи энергии АТФ.
К данному типу относятся Na+/K+ АТФ-аза. Переносит 3 иона Na из клетки во внешнюю среду, параллельно переносится в клетку 2 иона К+.
Са2+ -АТФ-аза. При гидролизе 1 молекулы АТФ переносится 2 иона Са2+ из клетки во внешнюю среду.
Н+ АТФ-аза. При гидролизе 1 молекулы АТФ из клетки выносится 2 иона Н+. Внешняя часть мембраны заряжена положительно (+), внутренняя - отрицательно (-).
Циклы работы АТФ-аз.
1. Основная роль в создании потенциала покоя мембраны принадлежит Na+/K+ АТФ-азе. Представляет собой 2 взаимодействующих белка (2-суьединичные). Крупные субъединицы обращены во внутреннюю среду клетки. М=84кДа. Обладает ферментативной активностью. Малые субъединицы АТФ-азной активностью не обладают. Обе с/е имеют по 1 центру связывания Na+/K+. В исходном состоянии большая с/е обладает большим сродством к Na+, а малая к К+.
1-цикл.
1. в исходном состоянии к малым с/е присоединяются 2 иона К+ из среды, а большие - 3 Na+ с внутренней стороны мембраны. Присоединение Na+ приводит к активации ферментативной активности. Происходит гидролиз АТФ, остаётся -РО4, который присоединяется к большой субъединице, неся 3 атома О2 (то есть отрицательный заряд). Приводит к напряжению данной субъединицы>стремление снять напряжение>конформационное изменение>центр связывания с ионом становится ближе к внешней стороне мембраны -> изменение конформации малой субъединицы (оба центра связывания располагаются друг напротив друга).
2- цикл
Изменение конформации приводит к изменению сродства к ионам>у большой с/е увеличивается сродство к К+, а у малой - к Na+. Большая присоединяет 2 иона К+, малая - 3Na+>меняется заряд>напряжение в белковой молекуле>обратное изменение конформации>исходное состояние (большая внутрь, малая наружу). Отщепляется остаток НЗРО4>сродство молекул возвращается в исходное состояние.
В центре связывания 12 атомов О.
Первый присоединившийся ион определяет дальнейшие события.
Са2+ -АТФ-аза.
1 интегральный белок Обладающий АТФ-азной активностью центр связывания и каталитический центр во внутренней среде клетки. В исходном состоянии центр связывания обладает сродством к Са2+. Цикл работы схож с Na+/K+.
Н+ АТФ-аза.
Состоит из 1 белка, перенос Н+ против градиента. Присоединение Н+ с внутренней стороны мембраны.
Механизмы первично активного транспорта
Энергия клеточного механизма концентрируется в виде АТФ. Существуют специальные мембранные насосы, их совокупность – первично активный транспорт. Источник энергии – клеточный метаболизм, если отключить источник энергии, то ионы расположатся равномерно, относительно мембраны. Концентрационный градиент направлен внутрь клетки, ионы Na пассивно поступают внутрь клетки. Но концентрационный градиент постоянен, так как ему противостоят Na насосы.
Основные особенности первично активного транспорта:
1. Осуществляется против концентрационного градиента.
2. Система первичного транспорта в высшей степени специфична (Na система не перекачивает другие ионы).
3. Для его обеспечения необходима АТФ или другие источники энергии (метаболические яды блокируют насос).
4. Обменивает один вид ионов на другой (К-Na насос).
5. Многие виды ионных насосов выполняют электрическую работу, перенося заряды через мембрану (реогенный насос – это насос, при работе которого создается электрический ток).
6. Активный транспорт с помощью ионных насосов избирательно подавляется блокирующими агентами. (Существуют специфические вещества, которые блокируют данный насос, например, убаин – сердечный гликозид. Это вещество конкурентно блокирует участки, связывающие ионы К+.)
7. Энергия, необходимая для первично активного транспорта, высвобождается при гидролизе АТФ ферментами, расположенными в мембране
Активность ферментов зависит от концентрации ионов.
Современная гипотеза первично активного транспорта
K-Na-АТФаза – молекула из двух субъединиц, имеющих внутренние полости: ?-большая субъединица (полипептид), ?-малая субъединица (гликопротеид). ? обладает высоким сродством к Na +, ? - к К+. Полость ?-субъединицы заполняется 3 ионами Na+, полость ?-субъединицы заполняется 2 ионами К+. Потом у ?-субъединицы сродство к Na+ падает, а у ?-субъединицы сродство к К+ возрастает.
За счет флуктуации происходит пространственное совмещение полостей субъединиц и обмен ионами. В конце цикла полости открываются, и ионы их покидают.
Другая гипотеза. В начале происходит заполнение полостей описанным выше способом, затем поворот K-Na-АТФазы на 1800. После чего ионы покидают полости, а K-Na-АТФаза опять поворачивается на 1800. Если молеула постоянно переворачивается, то это должно привести к перестройке молекулярного слоя – спорный момент.