
- •События и семафоры.
- •Мьютексы.
- •Реализация мониторов и передачи сообщений с помощью семафоров.
- •Реализация семафоров и передачи сообщений с помощью мониторов
- •Реализация семафоров и мониторов с помощью очередей сообщений
- •Управление памятью. Физическая организация памяти
- •Физическая организация памяти компьютера
- •Свойство локальности
- •Логическая память
- •Связывание адресов
- •Функции системы управления памятью
- •59. Схема управления памятью с одним процессом в памяти
- •Страничная память
- •Сегментная и сегментно-страничная организация памяти
- •Виртуальная память. Архитектурные средства поддержки виртуальной памяти. Понятие виртуальной памяти
- •Архитектурные средства поддержки виртуальной памяти
- •Страничная виртуальная память
- •Сегментно-страничная организация виртуальной памяти
- •Структура таблицы страниц
- •Ассоциативная память
- •Размер страницы
- •Аппаратно-независимый уровень управления виртуальной памятью. Исключительные ситуации при работе с памятью
- •Стратегии управления страничной памятью
- •Алгоритмы замещения страниц: общие правила, классификация, эффективность
- •Алгоритм fifo
- •Аномалия Билэди
- •Оптимальный алгоритм (opt)
- •Алгоритм nru
- •Алгоритм lru
- •Программное моделирование алгоритма lru
- •Трешинг
- •Моделирование рабочего множества
- •Страничные демоны (сервисы). Фоновый процесс
- •Программная поддержка сегментной модели памяти процесса
- •Файловая система. Файлы с точки зрения пользователя. Функции файловой системы
- •Общие сведения о файлах (имена, типы, атрибуты)
- •Организация файлов и доступ к ним (последовательный, прямой). Формы организации файлов
- •Операции над файлами
- •Директории. Логическая структура файлового архива
- •Разделы диска
- •Операции над директориями
- •Защита файлов
- •Реализация файловой системы. Общая структура файловой системы. Блок-схема файловой системы
- •Управление внешней памятью. Методы выделения дискового пространства
- •Выделение непрерывной последовательностью дисковых блоков
Реализация семафоров и передачи сообщений с помощью мониторов
Нам достаточно показать, что с помощью мониторов можно реализовать семафоры, так как получать из семафоров сообщения мы уже умеем.
Самый простой способ такой реализации выглядит следующим образом. Заведем внутри монитора переменную-счетчик, связанный с эмулируемым семафором список блокируемых процессов и по одной условной переменной на каждый процесс. При выполнении операции р над семафором вызывающий процесс проверяет значение счетчика. Если оно больше нуля, уменьшает его на 1 и выходит из монитора. Если оно равно 0, процесс добавляет себя в очередь процессов, ожидающих события, и выполняет операцию wait над своей условной переменной. При выполнении операции V над семафором процесс увеличивает значение счетчика, проверяет, есть ли процессы, ожидающие этого события, и если есть, удаляет один из них из списка и выполняет операцию signal для условной переменной, соответствующей процессу.
Реализация семафоров и мониторов с помощью очередей сообщений
Покажем, наконец, как реализовать семафоры с помощью очередей сообщений. Для этого воспользуемся более хитрой конструкцией, введя новый синхронизирующий процесс. Этот процесс имеет счетчик и очередь для процессов, ожидающих включения семафора. Для того чтобы выполнить операции р и V, процессы посылают синхронизирующему процессу сообщения, в которых указывают свои потребности, после чего ожидают получения подтверждения от синхронизирующего процесса.
После получения сообщения синхронизирующий процесс проверяет значение счетчика, чтобы выяснить, можно ли совершить требуемую операцию. Операция V всегда может быть выполнена, в то время как операция р может потребовать блокирования процесса. Если операция может быть совершена, то она выполняется, и синхронизирующий процесс посылает подтверждающее сообщение. Если процесс должен быть блокирован, то его идентификатор заносится в очередь блокированных процессов, и подтверждение не посылается. Позднее, когда какой-либо из других процессов выполнит операцию V, один из блокированных процессов удаляется из очереди ожидания и получает соответствующее подтверждение.
Поскольку мы показали ранее, как из семафоров построить мониторы, мы доказали эквивалентность мониторов, семафоров и сообщений.
Управление памятью. Физическая организация памяти
Главная задача компьютерной системы – выполнять программы. Программы вместе с данными, к которым они имеют доступ, в процессе выполнения должны (по крайней мере, частично) находиться в оперативной памяти. Операционной системе приходится решать задачу распределения памяти между пользовательскими процессами и компонентами ОС. Эта деятельность называется управлением памятью. Таким образом, память (storage, memory) является важнейшим ресурсом, требующим тщательного управления. В недавнем прошлом память была самым дорогим ресурсом.
Часть ОС, которая отвечает за управление памятью, называется менеджером памяти.
Физическая организация памяти компьютера
Запоминающие устройства компьютера разделяют, как минимум, на два уровня: основную (главную, оперативную, физическую) и вторичную (внешнюю) память.
Основная память представляет собой упорядоченный массив однобайтовых ячеек, каждая из которых имеет свой уникальный адрес (номер). Процессор извлекает команду из основной памяти, декодирует и выполняет ее. Для выполнения команды могут потребоваться обращения еще к нескольким ячейкам основной памяти. Обычно основная память изготавливается с применением полупроводниковых технологий и теряет свое содержимое при отключении питания.
Вторичную память (это главным образом диски) также можно рассматривать как одномерное линейное адресное пространство, состоящее из последовательности байтов. В отличие от оперативной памяти, она является энергонезависимой, имеет существенно большую емкость и используется в качестве расширения основной памяти.
Эту схему можно дополнить еще несколькими промежуточными уровнями, как показано на Рис 1. Разновидности памяти могут быть объединены в иерархию по убыванию времени доступа, возрастанию цены и увеличению емкости.
Рис 1. Иерархия памяти
Многоуровневую схему используют следующим образом. Информация, которая находится в памяти верхнего уровня, обычно хранится также на уровнях с большими номерами. Если процессор не обнаруживает нужную информацию на i-м уровне, он начинает искать ее на следующих уровнях. Когда нужная информация найдена, она переносится в более быстрые уровни.