
- •§ 6.3. Дифференциальные (реверсивные) индуктивные датчики
- •§ 6.4. Трансформаторные датчики
- •§ 6.5. Магнитоупругие датчики
- •§ 6.6. Индукционные датчики
- •Глава 7 пьезоэлектрические датчики
- •§ 7.1. Принцип действия
- •§ 7.2. Устройство пьезодатчиков
- •§ 7.3. Чувствительность пьезодатчика и требования к измерительной цепи
- •1. В чем заключается пьезоэлектрический эффект?
- •2. В каких материалах наиболее сильно проявляется пьезоэлектрический эффект?
- •Глава 8
- •§ 8.1. Принцип действия. Типы емкостных датчиков
- •§ 8.2. Характеристики и схемы включения емкостных датчиков
- •1. Под влиянием каких величин изменяется емкость конденсатора?
- •2. Какие схемы используют для включения емкостного датчика?
- •3. В чем достоинство резонансной схемы включения?
- •Глава 9 терморезисторы
- •§ 9.1. Назначение. Типы терморезисторов
- •§ 9.2. Металлические терморезисторы
- •§ 9.3. Полупроводниковые терморезисторы
- •§ 9.4. Собственный нагрев термисторов
- •§ 9.5. Применение терморезисторов
- •Глава 10 термоэлектрические датчики
- •§ 10.1. Принцип действия
- •§ 10.2. Материалы, применяемые для термопар
- •§ 10.3. Измерение температуры с помощью термопар
- •Глава 11 струнные датчики
- •§ 11.1. Назначение и принцип действия
- •§ 11.2. Устройство струнных датчиков
- •1. В чем достоинство частотного метода измерения?
- •2. Как зависит частота колебаний натянутой струны от силы натяжения и от длины струны?
- •Глава 12 фотоэлектрические датчики
- •§ 12.1. Назначение. Типы фотоэлектрических датчиков
- •§ 12.2. Приемники излучения фотоэлектрических датчиков
- •§ 12.3. Применение фотоэлектрических датчиков
- •1. Расскажите о различных проявлениях фотоэффекта: о внешнем, внутреннем и вентильном фотоэффектах.
- •2. Что такое спектральная характеристика?
- •3. Приведите примеры применения фотоэлектричесих датчиков в повседневной жизни.
- •Глава 13 ультразвуковые датчики
- •§ 13.1. Принцип действия и назначение
- •§ 13.2. Излучатели ультразвуковых колебаний
- •§ 13.3. Применение ультразвуковых датчиков
- •1. Поясните принцип действия эхолота.
- •2. Как работает излучатель ультразвуковых колебаний?
- •Глава 14
- •§ 14.1. Физические основы эффекта Холла и эффекта магнитосопротивления
- •§ 14.2. Материалы для датчиков Холла и датчиков магнитосопротивления
- •§ 14.3. Применение датчиков Холла и датчиков магнитосопротивления
- •1. Как проявляется эффект Холла? : 2. Почему в; магнитном: поле изменяется сопротивление проводника?
- •Раздел III
- •Глава 15
- •§ 15.1. Назначение. Основные понятия
- •§ 15.2. Кнопки управления и тумблеры
- •§ 15.3. Пакетные переключатели
- •§ 15.4. Путевые и конечные выключатели
- •1. Что такое коммутация?
- •2. Какие коммутационные элементы вы используете у себя дома?
- •3. Как осуществляется моментное действие выключателя?
- •Глава 16
- •§ 16.1. Режим работы контактов
- •§ 16.2. Конструктивные типы контактов
- •§ 16.3. Материалы контактов
- •1. От каких факторов зависит сопротивление контактного перехода?
- •2. Какие конструкции контактного узла применяют для повышения надежности его работы?
- •3. Какие материалы используют для контактов?
- •Глава 17
- •§ 17.1. Назначение. Принцип действия
- •§ 17.2. Основные параметры и типы электромагнитных реле
- •§ 17.3. Электромагнитные реле постоянного тока
- •§ 17.4. Последовательность работы электромагнитного реле
- •§ 17.5. Тяговая и механическая характеристики электромагнитного реле
- •§ 17.6. Основы расчета магнитопровода электромагнитного реле
- •§ 17.7. Основы расчета обмотки реле
- •§ 17.8. Электромагнитные реле переменного тока
- •§ 17.9. Быстродействие электромагнитных реле
- •Глава 18
- •§ 18.1. Назначение. Принцип действия
- •§ 18.3. Настройка контактов и устройство поляризованного реле
- •§ 18.4. Вибропреобразователи
- •1. В чем разница между поляризованным и нейтральным реле?
- •2. Как выполняется настройка контактов поляризованного реле?
- •3. Зачем нужен вибропреобразователь?
- •Глава 19
- •§ 19.1. Типы специальных реле
- •§ 19.2. Магнитоэлектрические реле
- •§ 19.3. Электродинамические реле
- •§ 19.5. Реле времени
- •§ 19.6. Электротермические реле
- •§ 19.7. Шаговые искатели и распределители
- •§ 19. . Магнитоуправляемые контакты. Типы и устройство
- •§ 19.9. Применение магнитоуправляемых контактов
- •Глава 20
- •§ 20.1. Назначение контакторов и магнитных пускателей
- •§ 20.2. Устройство и особенности контакторов
- •§ 20.3. Конструкции контакторов
1. Под влиянием каких величин изменяется емкость конденсатора?
2. Какие схемы используют для включения емкостного датчика?
3. В чем достоинство резонансной схемы включения?
Глава 9 терморезисторы
§ 9.1. Назначение. Типы терморезисторов
Терморезисторы относятся к параметрическим датчикам температуры, поскольку их активное сопротивление зависит от температуры. Терморезисторы называют также термометрами сопротивления или термосопротивлениями. Они применяются для измерения температуры в широком диапазоне от -2?0 до 1600 "С.
Если терморезистор нагревать проходящим через него электрическим током, то его температура будет зависеть от интенсивности теплообмена с окружающей средой. Так как интенсивность теплообмена зависит от физических свойств газовой или жидкой среды (например, от теплопроводности, плотности, вязкости), в которой находится терморезистор, от скорости перемещения терморезистора относительно газовой или жидкой среды, то терморезисторы используются и в приборах для измерения таких неэлектрических величин, как скорость, расход, плотность и др.
Различают металлические и полупроводниковые терморезисторы. Металлические терморезисторы изготовляют из чистых металлов: меди, платины, никеля, железа, реже из молибдена и вольфрама. Для большинства чистых металлов температурный коэффициент электрического сопротивления составляет примерно (4—6,5) • 10~3 1/°С, т. е. при увеличении температуры на 1 °С сопротивление металлического терморезистора увеличивается на 0,4—0,65 %. Наибольшее распространение получили медные и платиновые терморезисторы. Хотя железные и никелевые терморезисторы имеют примерно в полтора раза больший температурный коэффициент' сопротивления, чем медные и платиновые, однако применяются они реже. Дело в том, что железо и никель сильно окисляются и при этом меняют свои характеристики. Вообще добавление в металл незначительного количества примесей уменьшает температурный
Известно,
что функцию вида е* можно разложить в
степенной
ряд:
Широкое применение в автоматике получили полупроводниковые терморезисторы, которые для краткости называют термистора-ми. Материалом для их изготовления служат смеси оксидов марганца, никеля и кобальта; германий и кремний с различными примесями и др.
По сравнению с металлическими терморезисторами полупроводниковые имеют меньшие размеры в большие значения номинальных сопротивлений. Термисторы имеют на порядок больший температурный коэффициент сопротивления (до -6 • КГ2 1/°С). Но этот коэффициент — отрицательный, т. е. при увеличении температуры сопротивление термистора уменьшается. Существенный недостаток полупроводниковых терморезисторов по сравнению с металлическими — непостоянство температурного коэффициента сопротивления. С ростом температуры он сильно падает, т. е. термистор имеет нелинейную характеристику. При массовом производстве термисто-ры дешевле металлических терморезисторов, но имеют больший разброс характеристик.