
- •§ 6.3. Дифференциальные (реверсивные) индуктивные датчики
- •§ 6.4. Трансформаторные датчики
- •§ 6.5. Магнитоупругие датчики
- •§ 6.6. Индукционные датчики
- •Глава 7 пьезоэлектрические датчики
- •§ 7.1. Принцип действия
- •§ 7.2. Устройство пьезодатчиков
- •§ 7.3. Чувствительность пьезодатчика и требования к измерительной цепи
- •1. В чем заключается пьезоэлектрический эффект?
- •2. В каких материалах наиболее сильно проявляется пьезоэлектрический эффект?
- •Глава 8
- •§ 8.1. Принцип действия. Типы емкостных датчиков
- •§ 8.2. Характеристики и схемы включения емкостных датчиков
- •1. Под влиянием каких величин изменяется емкость конденсатора?
- •2. Какие схемы используют для включения емкостного датчика?
- •3. В чем достоинство резонансной схемы включения?
- •Глава 9 терморезисторы
- •§ 9.1. Назначение. Типы терморезисторов
- •§ 9.2. Металлические терморезисторы
- •§ 9.3. Полупроводниковые терморезисторы
- •§ 9.4. Собственный нагрев термисторов
- •§ 9.5. Применение терморезисторов
- •Глава 10 термоэлектрические датчики
- •§ 10.1. Принцип действия
- •§ 10.2. Материалы, применяемые для термопар
- •§ 10.3. Измерение температуры с помощью термопар
- •Глава 11 струнные датчики
- •§ 11.1. Назначение и принцип действия
- •§ 11.2. Устройство струнных датчиков
- •1. В чем достоинство частотного метода измерения?
- •2. Как зависит частота колебаний натянутой струны от силы натяжения и от длины струны?
- •Глава 12 фотоэлектрические датчики
- •§ 12.1. Назначение. Типы фотоэлектрических датчиков
- •§ 12.2. Приемники излучения фотоэлектрических датчиков
- •§ 12.3. Применение фотоэлектрических датчиков
- •1. Расскажите о различных проявлениях фотоэффекта: о внешнем, внутреннем и вентильном фотоэффектах.
- •2. Что такое спектральная характеристика?
- •3. Приведите примеры применения фотоэлектричесих датчиков в повседневной жизни.
- •Глава 13 ультразвуковые датчики
- •§ 13.1. Принцип действия и назначение
- •§ 13.2. Излучатели ультразвуковых колебаний
- •§ 13.3. Применение ультразвуковых датчиков
- •1. Поясните принцип действия эхолота.
- •2. Как работает излучатель ультразвуковых колебаний?
- •Глава 14
- •§ 14.1. Физические основы эффекта Холла и эффекта магнитосопротивления
- •§ 14.2. Материалы для датчиков Холла и датчиков магнитосопротивления
- •§ 14.3. Применение датчиков Холла и датчиков магнитосопротивления
- •1. Как проявляется эффект Холла? : 2. Почему в; магнитном: поле изменяется сопротивление проводника?
- •Раздел III
- •Глава 15
- •§ 15.1. Назначение. Основные понятия
- •§ 15.2. Кнопки управления и тумблеры
- •§ 15.3. Пакетные переключатели
- •§ 15.4. Путевые и конечные выключатели
- •1. Что такое коммутация?
- •2. Какие коммутационные элементы вы используете у себя дома?
- •3. Как осуществляется моментное действие выключателя?
- •Глава 16
- •§ 16.1. Режим работы контактов
- •§ 16.2. Конструктивные типы контактов
- •§ 16.3. Материалы контактов
- •1. От каких факторов зависит сопротивление контактного перехода?
- •2. Какие конструкции контактного узла применяют для повышения надежности его работы?
- •3. Какие материалы используют для контактов?
- •Глава 17
- •§ 17.1. Назначение. Принцип действия
- •§ 17.2. Основные параметры и типы электромагнитных реле
- •§ 17.3. Электромагнитные реле постоянного тока
- •§ 17.4. Последовательность работы электромагнитного реле
- •§ 17.5. Тяговая и механическая характеристики электромагнитного реле
- •§ 17.6. Основы расчета магнитопровода электромагнитного реле
- •§ 17.7. Основы расчета обмотки реле
- •§ 17.8. Электромагнитные реле переменного тока
- •§ 17.9. Быстродействие электромагнитных реле
- •Глава 18
- •§ 18.1. Назначение. Принцип действия
- •§ 18.3. Настройка контактов и устройство поляризованного реле
- •§ 18.4. Вибропреобразователи
- •1. В чем разница между поляризованным и нейтральным реле?
- •2. Как выполняется настройка контактов поляризованного реле?
- •3. Зачем нужен вибропреобразователь?
- •Глава 19
- •§ 19.1. Типы специальных реле
- •§ 19.2. Магнитоэлектрические реле
- •§ 19.3. Электродинамические реле
- •§ 19.5. Реле времени
- •§ 19.6. Электротермические реле
- •§ 19.7. Шаговые искатели и распределители
- •§ 19. . Магнитоуправляемые контакты. Типы и устройство
- •§ 19.9. Применение магнитоуправляемых контактов
- •Глава 20
- •§ 20.1. Назначение контакторов и магнитных пускателей
- •§ 20.2. Устройство и особенности контакторов
- •§ 20.3. Конструкции контакторов
Глава 17
ЭЛЕКТРОМАГНИТНЫЕ НЕЙТРАЛЬНЫЕ РЕЛЕ
§ 17.1. Назначение. Принцип действия
В системах автоматики одним из наиболее распространенных элементов является реле — устройство, в котором при плавном изменении входного (управляющего) сигнала осуществляется скачкообразное изменение (переключение) выходного сигнала.
В электромеханических реле изменение (переключение) выходного сигнала осуществляется посредством контактов, а усилие, перемещающее контакты, создается электромеханическим преобразователем электрической энергии в механическую. Простейшим из таких преобразователей является электромагнит. Поэтому из электромеханических реле наибольшее распространение получили электромагнитные реле.
Пусть входной сигнал хт изменяется во времени непрерывно (т. е. может принимать любые значения) от нуля до некоторого значения, а затем также непрерывно уменьшается, как показано на рис. 17.1, а. Сначала при малых значениях хю выходной сигнал х^ равен нулю. Но когда входной сигнал увеличится до некоторого значения хтср, выходной сигнал скачком примет значение хвккср (рис. 17.1, б). При дальнейшем увеличении входного сигнала выходной сигнал не изменяется и остается равным хвыхср. При уменьшении сигнала хт значение выходного сигнала не изменяется, но при
уменьшении его до значения хвыхотп выходной сигнал скачком уменьшается до нуля. Пр)иг дальнейшем уменьшении входного сигнала нулевое значение выходного сигнала сохраняется. Зависимость выходного сигнала от входного показана на рис. 17.1, в.
Значение входного сигнала хт ср, при котором выходной сигнал скачком изменяется от 0 до ^ых.ср, называется сигналом срабатывания. Значение входного сигнала хВХОТП, при котором выходной сигнал скачком изменяется от хвыхср до 0, называется сигналом отпускания. Как правило, сигнал срабатывания больше сигнала отпускания (хткр > ^.отп). Поэтому изменение хвых при увеличении хт происходит по одному графику, а при уменьшении д:вх — по другому (рис. 17.1, в). В этом случае можно сказать, что характеристика реле имеет петлю гистерезиса. В ряде случаев, когда значения сигналов срабатывания и отпускания близки, гистерезисом можно пренебречь. В этом случае зависимость хшх =Axm) показана на рис. 17.1, г. Теперь рассмотрим изменение выходного сигнала при изменении полярности входного сигнала. Если полярность выходного сигнала не влияет на полярность выходного сигнала, то при х,х = -ХдХ ср выходной сигнал скачком изменяется от нуля до хвых ср (piic 17.1, д). Такую характеристику имеют нейтральные реле. Если полярность выходного сигнала влияет на полярность выходного сигнала, то при хвх = -*вхср выходной сигнал скачком изменяется от нуля до -хвыхср (рис. 17.1, е). Такую характеристику и подобные ей имеют поляризованные реле.
По принципу действия различают электромеханические реле, магнитные бесконтактные реле, электронные, полупроводниковые и фотоэлектрические реле и др.
; Реле применяются в схемах автоматического управления, а также для сигнализации, защиты и блокировки.
Рассмотрим работу реле на примере схемы Сигнализации, показанной на рис. 17.2, с использованием реле. Реле состоит из обмотки /, размещенной на неподвижном сердечнике 2, подвижного якоря 3 и контактов 4, 5, 6. Сердечник с обмоткой и якорем представляет собой электромагнит. Когда под действием напряжения U по обмотке / проходит ток /, якорь 3 притягивается к сердечнику 2 и перемещает подвижный контакт 6 влево. При этом контакты 5 и
Сигнализация по схеме на рис. 17.2 работает следующим образом. Пока кнопка не нажата, ток в реле не поступает и горит лампа HL1 (зеленая), которая питается напряжением сети переменного тока U~ через замкнутые контакты 5 и 6. Лампа HL2 (красная) при этом не горит, поскольку контакты 6 и 4 разомкнуты. Если нажата кнопка, то ток идет в обмотку реле, оно срабатывает (т. е. в электромагните якорь 3 притягивается к сердечнику 2) и замыкаются контакты 6, 4, а контакты 5, 6 размыкаются. Загорается лампа HL2 (красная), получая питание через контакты 6, 4, а лампа HL1 гаснет. Так будет до тех пор, пока нажата кнопка. Если ее отпустить, то схема возвратится в исходное состояние.
На рис. 17.3 показана электрическая схема, соответствующая рис. 17.2, на которой использованы стандартные условные обозначения элементов. Обмотка реле обозначена прямоугольником. Контактные пары 5—6 и 6—4 показаны в том состоянии, в котором они находятся, когда ток по обмотке реле не проходит. Контакты 5—6 называются размыкающими, контакты 6—4 — замыкающими. Обратите внимание на то, что обмотка реле и его контакты обозначены одинаковыми буквами К. На электрической схеме они могут находиться в самых разных местах, хотя конструктивно относятся к одному и тому же устройству. Одно реле может иметь несколько замыкающих и размыкающих контактов, но все они должны обозначаться одинаковыми буквами (или буквами и цифрами, если в схеме используется несколько реле).
Ток и мощность в цепи обмотки реле обычно значительно меньше, чем ток и мощность в цепи нагрузки, переключения в которой осуществляются с помощью контактов этого реле. Поэтому можно говорить об эффекте усиления, обеспечиваемом реле. Это значит, что кнопка в цепи обмотки реле может быть маломощной. Например, вместо нее можно применить путевой выключа-
тель или микропереключатель. А контакты реле уже могут быть достаточно мощными, но они размещены в более благоприятных условиях, чем управляющие контакты путевого выключателя, находящегося непосредственно на производственном механизме. Само реле находится обычно в каком-либо шкафу управления, а в конструкции реле предусмотрены меры по защите контактов.