
- •§ 6.3. Дифференциальные (реверсивные) индуктивные датчики
- •§ 6.4. Трансформаторные датчики
- •§ 6.5. Магнитоупругие датчики
- •§ 6.6. Индукционные датчики
- •Глава 7 пьезоэлектрические датчики
- •§ 7.1. Принцип действия
- •§ 7.2. Устройство пьезодатчиков
- •§ 7.3. Чувствительность пьезодатчика и требования к измерительной цепи
- •1. В чем заключается пьезоэлектрический эффект?
- •2. В каких материалах наиболее сильно проявляется пьезоэлектрический эффект?
- •Глава 8
- •§ 8.1. Принцип действия. Типы емкостных датчиков
- •§ 8.2. Характеристики и схемы включения емкостных датчиков
- •1. Под влиянием каких величин изменяется емкость конденсатора?
- •2. Какие схемы используют для включения емкостного датчика?
- •3. В чем достоинство резонансной схемы включения?
- •Глава 9 терморезисторы
- •§ 9.1. Назначение. Типы терморезисторов
- •§ 9.2. Металлические терморезисторы
- •§ 9.3. Полупроводниковые терморезисторы
- •§ 9.4. Собственный нагрев термисторов
- •§ 9.5. Применение терморезисторов
- •Глава 10 термоэлектрические датчики
- •§ 10.1. Принцип действия
- •§ 10.2. Материалы, применяемые для термопар
- •§ 10.3. Измерение температуры с помощью термопар
- •Глава 11 струнные датчики
- •§ 11.1. Назначение и принцип действия
- •§ 11.2. Устройство струнных датчиков
- •1. В чем достоинство частотного метода измерения?
- •2. Как зависит частота колебаний натянутой струны от силы натяжения и от длины струны?
- •Глава 12 фотоэлектрические датчики
- •§ 12.1. Назначение. Типы фотоэлектрических датчиков
- •§ 12.2. Приемники излучения фотоэлектрических датчиков
- •§ 12.3. Применение фотоэлектрических датчиков
- •1. Расскажите о различных проявлениях фотоэффекта: о внешнем, внутреннем и вентильном фотоэффектах.
- •2. Что такое спектральная характеристика?
- •3. Приведите примеры применения фотоэлектричесих датчиков в повседневной жизни.
- •Глава 13 ультразвуковые датчики
- •§ 13.1. Принцип действия и назначение
- •§ 13.2. Излучатели ультразвуковых колебаний
- •§ 13.3. Применение ультразвуковых датчиков
- •1. Поясните принцип действия эхолота.
- •2. Как работает излучатель ультразвуковых колебаний?
- •Глава 14
- •§ 14.1. Физические основы эффекта Холла и эффекта магнитосопротивления
- •§ 14.2. Материалы для датчиков Холла и датчиков магнитосопротивления
- •§ 14.3. Применение датчиков Холла и датчиков магнитосопротивления
- •1. Как проявляется эффект Холла? : 2. Почему в; магнитном: поле изменяется сопротивление проводника?
- •Раздел III
- •Глава 15
- •§ 15.1. Назначение. Основные понятия
- •§ 15.2. Кнопки управления и тумблеры
- •§ 15.3. Пакетные переключатели
- •§ 15.4. Путевые и конечные выключатели
- •1. Что такое коммутация?
- •2. Какие коммутационные элементы вы используете у себя дома?
- •3. Как осуществляется моментное действие выключателя?
- •Глава 16
- •§ 16.1. Режим работы контактов
- •§ 16.2. Конструктивные типы контактов
- •§ 16.3. Материалы контактов
- •1. От каких факторов зависит сопротивление контактного перехода?
- •2. Какие конструкции контактного узла применяют для повышения надежности его работы?
- •3. Какие материалы используют для контактов?
- •Глава 17
- •§ 17.1. Назначение. Принцип действия
- •§ 17.2. Основные параметры и типы электромагнитных реле
- •§ 17.3. Электромагнитные реле постоянного тока
- •§ 17.4. Последовательность работы электромагнитного реле
- •§ 17.5. Тяговая и механическая характеристики электромагнитного реле
- •§ 17.6. Основы расчета магнитопровода электромагнитного реле
- •§ 17.7. Основы расчета обмотки реле
- •§ 17.8. Электромагнитные реле переменного тока
- •§ 17.9. Быстродействие электромагнитных реле
- •Глава 18
- •§ 18.1. Назначение. Принцип действия
- •§ 18.3. Настройка контактов и устройство поляризованного реле
- •§ 18.4. Вибропреобразователи
- •1. В чем разница между поляризованным и нейтральным реле?
- •2. Как выполняется настройка контактов поляризованного реле?
- •3. Зачем нужен вибропреобразователь?
- •Глава 19
- •§ 19.1. Типы специальных реле
- •§ 19.2. Магнитоэлектрические реле
- •§ 19.3. Электродинамические реле
- •§ 19.5. Реле времени
- •§ 19.6. Электротермические реле
- •§ 19.7. Шаговые искатели и распределители
- •§ 19. . Магнитоуправляемые контакты. Типы и устройство
- •§ 19.9. Применение магнитоуправляемых контактов
- •Глава 20
- •§ 20.1. Назначение контакторов и магнитных пускателей
- •§ 20.2. Устройство и особенности контакторов
- •§ 20.3. Конструкции контакторов
§ 16.3. Материалы контактов
При выборе материала контактов необходимо обеспечить выполнение целого ряда требований: большая механическая прочность, высокая температура плавления, хорошие теплопроводность и электропроводность, устойчивость против коррозии и эрозии. Низкая стоимость, конечно, желательна, но она не относится к основным требованиям. Основные требования — это те, которые обеспечивают высокую надежность. Известны случаи, когда отказ одно-го-единственного контакта приводил к потерям, в миллионы раз превышающим стоимость этого контакта.
Сопротивление
контактного перехода определяется по
формуле
Для точечных контактов Ь « 0,5; для линейных b ?= 0,55-=-0,7; для плоскостных b « 1,0.
Коэффициент а для меди, например, находится в пределах от 0,07 до 0,28, т. е. может изменяться в четыре раза. Наименьшие значения а (и соответственно сопротивления Лк) обеспечиваются при покрытии меди слоем олова (лужение). Слой олова препятствует образованию оксида, поэтому для луженых медных контактов коэффициент а < 0,1. Большие значения а получаются для нелуженых плоскостных медных контактов, поскольку у них имеются участки, покрытые слоем окиси. Для серебряных контактов а = 0,06. Интересно отметить, что электропроводность оксида серебра и чистого серебра примерно равны.
Для малых контактных усилий в высокочувствительных реле применяются благородные металлы (платина, золото, платиноири-дий) при контактных усилиях F= 0,01-^0,05 Н. Эти материалы не окисляются и мало подвержены эрозии. При контактных усилиях F= 0,05-^1 Н и малой частоте срабатывания применяется серебро, которое имеет хорошую электропроводность, легко обрабатывается, но имеет невысокую твердость и подвержено эрозии. При контактных усилиях F= 0,3-Й Ни большой частоте срабатывания используются металлокерамические контакты, получаемые методами порошковой металлургии (путем спекания смеси порошков двух металлов: серебра с вольфрамом, молибденом или никелем, меди с вольфрамом или молибденом). При контактных усилиях F> I H и большой частоте срабатывания применяется вольфрам.
Наиболее дешевым материалом является медь, она применяется для мощных контактов, имеющих сравнительно большие размеры и требующих большого расхода материала. Контактные усилия для меди'F> 3 Н. Для защиты от коррозии кроме лужения применяется серебрение или кадмирование медных контактов.
Контрольные вопросы
1. От каких факторов зависит сопротивление контактного перехода?
2. Какие конструкции контактного узла применяют для повышения надежности его работы?
3. Какие материалы используют для контактов?
где а — коэффициент, зависящий от материала и обработки поверхности контакта; F — контактное усилие; b — коэффициент формы контактов.