- •1. Строение атома
- •1.1. Энергетическое состояние электронов в атоме
- •1.2. Основные принципы распределения электронов в атомах
- •В соответствии с этим правилом последовательность заполнения подуровней:
- •1.3. Периодический закон и электронные формулы атомов
- •1.4. Примеры решения и оформления заданий
- •1.5. Задания для самостоятельной подготовки
- •2. Классы неорганических веществ
- •2.1. Оксиды
- •Основные оксиды
- •Кислотные оксиды
- •Амфотерные оксиды
- •2.2. Гидроксиды
- •Основания
- •Кислоты
- •Амфотерные гидроксиды
- •2.3. Соли
- •Средние соли
- •Кислые соли
- •Основные соли
- •2.4. Примеры решения заданий
- •2.5. Задания для самостоятельной подготовки
- •3. Основы химической термодинамики
- •3.1. Энтальпия
- •3.2. Энтропия
- •3.3 Энергия Гиббса и ее изменение в ходе химических реакций
- •3.4. Примеры решения заданий
- •3.5. Задания для самостоятельной подготовки
- •4. Химическое равновесие
- •4.1. Константа химического равновесия
- •4.2. Принцип Ле Шателье
- •Влияние концентраций компонентов системы
- •Влияние температуры
- •Влияние общего давления в системе
- •4.3 Примеры решения заданий
- •4.4. Задания для самостоятельной подготовки
- •5. Растворы
- •5.1. Примеры решения заданий
- •5.2. Задания для самостоятельной подготовки
- •5.3. Электролиты
- •Теория электролитической диссоциации Степень диссоциации
- •5.4. Ионные реакции
- •5.5. Примеры решения заданий
- •5.6. Задания для самостоятельной подготовки
- •5.7. Диссоциация воды. Водородный показатель
- •5.8. Гидролиз
- •5.9. Примеры решения заданий
- •5.10 Задания для самостоятельной подготовки
- •6. Окислительно-восстановительные процессы
- •6.1. Степень окисления
- •6.2. Окислительно-восстановительные реакции
- •6.3. Составление уравнений окислительно-восстановительных реакций
- •Правила составления полуреакций в разных средах
- •Овр в кислой среде
- •Овр в щелочной среде
- •Овр в нейтральной среде
- •6.4. Примеры решения заданий
- •6.5. Задания для самостоятельной подготовки
- •6.6 Взаимодействие металлов с кислотами, водой и растворами щелочей
- •6.7. Примеры решения и оформления заданий
- •6.8. Задания для самостоятельной подготовки
- •6.9. Электрохимическая коррозия
- •Описание процесса гальванокоррозии
- •6.10. Примеры решения заданий
- •6.11. Задания для самостоятельной подготовки
- •6.12. Электролиз растворов
- •Катодные процессы
- •Анодные процессы
- •Законы фарадея
- •6.13. Примеры решения и оформления заданий
- •6.14 Задания для самостоятельной подготовки
- •Библиографический список Основная литература
- •Дополнительная литература
- •Стандартные энтальпии образования и энтропии
- •Названия некоторых кислот и их солей
- •Стандартные окислительно-восстановительные потенциалы металлов
- •Окислительно-восстановительные потенциалы водорода, кислорода и металлов в разных средах оглавление
1. Строение атома
Атом представляет собой сложную систему находящихся в движении и взаимодействии элементарных частиц. Он состоит из положительно заряженного ядра, в котором заключена основная его масса, отрицательно заряженных электронов. Заряд ядра равен числу содержащихся в нем протонов (Z) и соответствует порядковому номеру элемента в периодической системе. Его указывают слева внизу у символа элемента, например, (Z = 14).
Число электронов в атоме равно заряду его ядра, а, следовательно, совпадает с порядковым номером элемента в периодической системе.
Суммарное число протонов и нейтронов соответствует массовому числу атома (A) (; А=28).
Число нейтронов (N) вычисляется по формуле
N = A – Z,
где А – массовое число атома.
1.1. Энергетическое состояние электронов в атоме
Энергетическое состояние электронов в атоме характеризуют четыре квантовых числа: n, l, ml, s.
n – главное квантовое число – характеризует энергию электрона в зависимости от удаленности его от ядра; n определяет номер энергетического уровня и может принимать целочисленные значения:
n = 1, 2, 3, 4, 5, 6, 7…
l – орбитальное или азимутальное квантовое число – характеризует энергию электрона в зависимости от формы орбитали. Область пространства, в котором наиболее вероятно нахождение электрона, называется его орбиталью.
l может принимать целочисленные значения в интервале от 0 до (n–1), где n – главное квантовое число.
Если n = 1 (первый уровень), то l = 0, т.е. существует один подуровень. Если n = 2, то l принимает два значения: l = 0 и l = 1, т.е. два подуровня, если n = 3, то l = 0, 1, 2, если n = 4, то l = 0, 1, 2, 3, т. е. число подуровней равно номеру уровня. Каждому значению l соответствует определенная форма орбитали.
Подуровни имеют буквенное обозначение:
Значение орбитального квантового числа, l |
0 |
1 |
2 |
3 |
Обозначение подуровня (орбитали) |
s |
p |
d |
f |
|
ml – магнитное квантовое число – характеризует энергию электрона в зависимости от ориентации орбитали в пространстве. Число значений ml определяют по формуле (2l + 1), ml принимает значения –l...0...+l.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
s – спиновое квантовое число – характеризует энергию электрона в зависимости от вращения его вокруг своей собственной оси, s принимает значения +1/2 или –1/2. Условно электрон обозначают стрелкой ↑ (s = +1/2) или ↓ (s = –1/2).