Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
чОткое ЧМ.doc
Скачиваний:
1
Добавлен:
24.12.2018
Размер:
494.59 Кб
Скачать

Геометрическая интерпретация

Основная идея метода заключается в следующем: задаётся начальное приближение вблизи предположительного корня, после чего строится касательная к исследуемой функции в точке приближения, для которой находится пересечение с осью абсцисс. Эта точка и берётся в качестве следующего приближения. И так далее, пока не будет достигнута необходимая точность.

Пусть  — определённая на отрезке [a, b] и дифференцируемая на нём действительнозначная функция. Тогда формула итеративного исчисления приближений может быть выведена следующим образом:

,

где α — угол наклона касательной в точке .

Следовательно искомое выражение для имеет вид:

.

Итерационный процесс начинается с некого начального приближения x0 (чем ближе к нулю, тем лучше, но если предположения о нахождении решения отсутствуют, методом проб и ошибок можно сузить область возможных значений, применив теорему о промежуточных значениях).

Алгоритм

  1. Задаются начальным приближением x0.

  2. Пока не выполнено условие остановки, в качестве которого можно взять или (то есть погрешность в нужных пределах), вычисляют новое приближение: .

Ограничения

Пусть задано уравнение , где и надо найти его решение.

Теорема Канторовича.

Если существуют такие константы , что:

  1. на , то есть существует и не равна нулю;

  2. на , то есть ограничена;

  3. на , и ;

Причём длина рассматриваемого отрезка . Тогда справедливы следующие утверждения:

  1. на существует корень x * уравнения ;

  2. если , то итерационная последовательность сходится к этому корню: ;

  3. погрешность может быть оценена по формуле .

Из последнего из утверждений теоремы в частности следует квадратичная сходимость метода:

Тогда ограничения на исходную функцию будут выглядеть так:

  1. функция должна быть ограничена;

  2. функция должна быть гладкой, дважды дифференцируемой;

  3. её первая производная f'(x) равномерно отделена от нуля;

  4. её вторая производная должна быть равномерно ограничена.

4) Метод Ньютона — Рафсона

Метод Ньютона-Рафсона является улучшением метода Ньютона нахождения экстремума, описанного выше. Основное отличие заключается в том, что на очередной итерации каким-либо из методов одномерной оптимизации выбирается оптимальный шаг:

,

где

Для оптимизации вычислений применяют следующее улучшение: вместо того, чтобы на каждой итерации заново вычислять гессиан целевой функции, ограничиваются начальным приближением и обновляют его лишь раз в шагов, либо не обновляют вовсе.

Применительно к задачам о наименьших квадратах

На практике часто встречаются задачи, в которых требуется произвести настройку свободных параметров объекта или подогнать математическую модель под реальные данные. В этих случаях появляются задачи о наименьших квадратах:

Эти задачи отличаются особым видом градиента и матрицы Гессе:

где матрица Якоби вектор-функции , — матрица Гессе для её компоненты .

Тогда очередное направление определяется из системы:

5) Метод Гаусса — Ньютона

Метод Гаусса — Ньютона строится на предположении о том, что слагаемое доминирует над . Это требование не соблюдается, если минимальные невязки велики, т.е. если норма сравнима с максимальным собственным значением матрицы . В противном случае можно записать:

Таким образом, когда норма близка к нулю, а матрица имеет полный столбцевой ранг, направление мало отличается от Ньютоновского (с учётом ), и метод может достигать квадратичной скорости сходимости, хотя вторые производные и не учитываются. Улучшением метода является алгоритм Левенберга — Марквардта, основанный на эвристических соображениях.