
- •Что такое параллельные вычислительные системы и зачем они нужны
- •Некоторые примеры использования параллельных вычислительных систем Об использования суперкомпьютеров
- •Классификация параллельных вычислительных систем
- •Классификация современных параллельных вычислительных систем с учетом структуры оперативной памяти, модели связи и обмена Симметричные скалярные мультипроцессорные вычислительные системы
- •Несимметричные скалярные мультипроцессорные вычислительные системы
- •Массово параллельные вычислительные системы с общей оперативной памятью
- •Массово параллельные вычислительные системы с распределенной оперативной памятью
- •Серверы
- •Требования к серверам Основные компоненты и подсистемы современных серверов
- •Структуры несимметричных мвс с фирмы Intel Структурные особенности процессоров со структурой Nehalem
- •Структуры мвс с процессорами Nehalem
- •Мвс на базе процессоров фирмы amd
- •Структура шестиядерного процессора Istanbul приведена на рис. 23.
- •Примеры структур несимметричных мвс с процессорами линии Opteron Barcelona, Shanghai, Istanbul
- •Сравнение структур мвс с процессорами Barcelona, Shanghai, Istanbul с мвс с процессорами со структурой Nehalem
- •12 Ядерные процессоры Magny-Cours
- •Основные особенности 12-ти и 8-ми ядерных микросхем Magny-Cours
- •Структуры мвс с процессорами Magny--Cours
- •Перспективы развития процессоров фирмы amd для мвс
- •Мвс на базе процессоров фирмы ibm power6, power7 Основные особенности процессоров power6, power7
- •Процессор power6
- •Структуры мвс на базе процессоров power4, power5
- •Структуры мвс на базе процессоров power6, power7
- •Требования к серверам
- •Основные компоненты и подсистемы современных серверов
- •Поддерживаемые шины ввода-вывода
- •Raid контроллеры
- •Сервер Superdome 2 для бизнес-критичных приложений
- •Структура сервера
- •Надежность и доступность
- •Конфигурации и производительность
- •Основные особенности симметричных мультипроцессорных систем?
- •Векторные параллельные системы
- •Скалярная и векторная обработка
- •Основные особенности векторных параллельных систем
- •Векторные параллельные системы sx-6, sx-7 фирмы nec
- •Особенности вычислительной системы sx-7
- •Параллельная векторная система Earth Simulator
- •Cуперкластерная система
- •Суперкомпьютер CrayXt5h
- •«Лезвия» векторной обработки Cray x2
- •«Лезвия» с реконфигурируемой структурой
- •Массово параллельные вычислительные системы с скалярными вычислительными узлами и общей оперативной памятью
- •Массово параллельные вычислительные системы с скалярными вычислительными узлами и распределенной оперативной памятью
- •Cуперкомпьютеры семейства cray xt Семейство Cray xt5
- •«Гибридные» суперкомпьютеры CrayXt5h
- •«Лезвия» векторной обработки Cray x2
- •«Лезвия» с реконфигурируемой структурой
- •Развитие линии Cray хт5 – Cray xt6/xt6m
- •Модель Cray xe6
- •Процессор
- •Коммуникационная среда с топологией «3-мерный тор»
- •Реализация коммуникационных сред
- •Операционная система
- •Суперкомпьютер RoadRunner
- •Топологии связей в массово параллельных системах
- •Оценка производительности параллельных вычислительных систем
- •Необходимость оценки производительности параллельных вычислительных систем
- •Реальная производительность параллельных вычислительных систем Анализ «узких мест» процесса решения задач и их влияния на реальную производительность
- •«Узкие» места, обусловленные иерархической структурой памяти
- •Влияние на реальную производительность параллельных вычислительных систем соответствия их структуры и структуры программ
- •Анализ реальной производительности («узких» мест) мвс с общей оперативной памятью
- •Анализ реальной производительности («узких» мест) кластерных систем с распределённой оперативной памятью
- •Какие «узкие места» процесса решения задач существенно влияют на реальную производительность параллельных вычислительных систем?
- •Тенденции развития суперкомпьютеров. Список top500
- •Что такое список тор 500 и как он создается?
- •38 Редакция списка (ноябрь 2011 г.)
- •Коммуникационные технологии
- •Архитектуры, модели процессоров и их количество в системах списка
- •Основные тенденции развития суперкомпьютеров
- •Перспективные суперкомпьютеры тера- и экзафлопного масштаба
- •Производительность 500 лучших суперкомпьютеров за последние 18 лет
- •Перспективные суперкомпьютеры тера- и экзафлопного масштаба
- •Программа darpa uhpc
- •Основные положения программы uhpc
- •Экзафлопсный барьер: проблемы и решения
- •Проблемы
- •Эволюционный путь
- •Революционный путь
- •Кто победит?
- •Примеры перспективных суперкомпьютеров Суперкомпьютер фирмы ibm Mira
- •Стратегические суперкомпьютерные технологии Китая
«Гибридные» суперкомпьютеры CrayXt5h
Кроме «обычных» массово параллельных суперкомпьютеров фирма Сray может поставлять гибридные системы, в которых используются векторные процессоры или программируемые логические матрицы FPGA.
«Лезвия» векторной обработки Cray x2
Векторные процессоры сегодня в мире используются редко (естественно, речь не идет о графических процессорах или процессорах х86-архитектуры c векторными расширениями системы команд типа SSE, включающими обработку очень коротких векторов). Кроме унаследованных приложений, к применению векторных систем могут подтолкнуть, пожалуй, только очень высокие требования к пропускной способности оперативной памяти, где векторные процессоры – при обращении к последовательным адресам памяти – обладают преимуществами.
Для таких приложений в Cray XT5h используются «лезвия» векторной обработки Cray X2. Эти вычислительные «лезвия» состоят из двух векторных вычислительных узлов. Каждый узел представляет собой четырехпроцессорную симметричную систему с общим полем оперативной памяти емкостью 32-64 Гбайт (рис. 4).
Векторные процессоры (V) работают на частоте 1,6 ГГц, имеют производительность 25,6 GFLOPS и являются одноядерными. Каждый векторный процессор V содержит суперскалярный процессор и восемь векторных конвейеров. В состав векторного процессора V входит три уровня кэша, в том числе 512 Кбайт кэша второго уровня и 8 Мбайт – третьего. Обеспечивается когерентность кэш-памяти разных векторных процессоров V.
Рис. 4.
Производительность узла составляет свыше 100 GFLOPS (это, однако, меньше, чем у «обычных» узлов на базе процессоров Istanbul), а пропускная способность оперативной памяти в расчете на один векторный процессор V равна 28,5 Гбайт/с.
Внутри узла оперативная память однородна по времени доступа, но при доступе в оперативную память другого узла мы имеем модель NUMA. Для связи векторных узлов применяется другое, разработанное фирмой Cray, межсоединение с топологией «толстого дерева», представляющее собой один из вариантов сети Клоза.
Пропускная способность межсоединения для связей «точка-точка» составляет 9,4 Гбайт/с; в фирме Сray говорят и о низких величинах задержки. Структурно возможно масштабирование векторной подсистемы Cray ХТ5h до 32K векторных процессоров, работающих с общим глобальным адресным пространством.
Таким образом, речь фактически идет о векторной многопроцессорной системе с собственным межсоединением, «погруженной» в Cray XT5. Для взаимодействия векторной подсистемы с межсоединением SeaStar2+ применяются прямые интерфейсы в узлах, имеющие пропускную способность 4,8 Гбайт/с (рис. 4).
«Лезвия» этой векторной подсистемы размещаются в стойках высотой 2м и основанием 1м х 1,6м, вес которых составляет 1,1 тонн, а энергопотребление – до 45 кВт.
«Лезвия» с реконфигурируемой структурой
В Cray XT5h могут применяться «лезвия» XR1 с FPGA-процессорами. Каждое такое «лезви»е имеет два узла (рис. 5). Узлы содержат по одному процессору линии Opteron, который каналами HyperTransport связан с SeaStar2+ и с модулем RPU (Reconfigurable Processor Unit) разработки компании DRC Computer.
RPU (всего их в узле два) размещаются в процессорных разъемах AMD Socket 940 и поддерживают три интерфейса HyperTransport (через эти каналы два RPU связаны между собой) и 128-разрядные каналы в оперативную память DDR-400 c пропускной способностью 6,4 Гбайт/с. Этот же тип оперативной памяти используется в узле как локальная память для процессоров Opteron, но емкость последней составляет от 2 Гбайт до 8 Гбайт, а емкость локальной оперативной памяти для RPU – от 1 Гбайт до 4 Гбайт.
Фирма DRC Computer предлагает на рынке несколько моделей RPU; в узлах XR1 применяются RPU LX200/LP, в которых использованы мощные FPGA-процессоры Xilinx Virtex-4. LX-200 содержит 200448 логических ячеек и собственную память на плате с пропускной способностью 14,4 Гбайт/с. В RPU применяется память типа RLDRAM емкостью 256 Мбайт. Пропускная способность «внешних» (для FPGA) HyperTransport-каналов cоставляет 6,4 Гбайт/с – для интерфейса с SeaStar, 3,2 Гбайт/с – для интерфейса с процессорами Opteron.
Рис. 5.
В одной системе Cray ХТ5h может содержаться до 30 тыс. FPGA-процессоров Virtex-4, из расчета до 48 узлов (96 RPU) на стойку, с затратами на электропитание – до 12 кВт на стойку. Применение в RPU разъема, совместимого с Socket 940, и поддержка HyperTransport представляется эффективным техническим решением, обеспечивающим высокую пропускуную способность и низкие задержки.
FPGA-подсистема Cray ХТ5h может применяться для задач криптографии, рендеринга, сортировки, при поисках последовательностей, для некоторых задач моделирования и др.