
- •Вопрос 1. Механика. Механическое движение. Скорость, ускорение материальной точки.
- •Вопрос 2. Прямолинейное движение и движение по окружности материальной точки
- •Вопрос 3. Законы Ньютона.
- •Вопрос 4. Силы в механике.
- •Вопрос 5. Законы сохранения.
- •Вопрос 6. Основной закон динамики вращательного движения твердого тела.
- •Вопрос 7. Энергия, работа, мощность
- •Вопрос 8. Колебания
- •Вопрос 9. Волны. Звук.
Вопрос 7. Энергия, работа, мощность
Энергия — едина как общая количественная мера движения и взаимодействия материи. Современное знание насчитывает 15 форм движения материи, и соответственно им получается следующая классификация видов энергии, которая охватывает все варианты энергетических превращений на Земле: тепловая, механическая, электрическая, электростатическая, электромагнитная, магнитостатическая, химическая, упругостная, ядерная, гравистатическая, гравидинамическая, аннитиляционная, нейтриностатическая, нейтринодинамическая, мезонная. Подразделение энергии на виды условно, так как она является универсальной мерой различных форм движения и взаимодействия. Заметим, что природа ограничивает выбор источников энергии незначительным кругом накопленных за время существования Земли невозобновляемых (химическая энергия ископаемых органических топлив, внутренняя теплота Земли, ядерная энергия деления, термоядерная энергия) и возобновляемых ресурсов (энергия морских приливов, солнечных лучей, ветра, рек). В одних энергетических процессах форма движения материи может не изменяться (например, в процессах передачи теплоты от тел, более нагретых, к телам, менее нагретым), в других процессах преобразования энергии одна форма движения материи может переходить в иную (например, при трении механическое движение переходит в тепловое и соответственно механическая энергия преобразуется в тепловую).
Чтобы характеризовать количественно процесс передачи направленного, упорядоченного движения материи или обмена энергией между взаимодействующими телами, в механике используется понятие работы силы или, просто, работы.
Для случая прямолинейного движения тела под действием постоянной силы F, которая составляет некоторый угол а с направлением перемещения длиной s, работа этой силы равна произведению:
В
общем случае сила может изменяться по
модулю и по направлению.
Силу F
можно
считать постоянной только в случае
прямолинейного элементарного перемещения
тела на величину
dr
(рис.
3.1). Элементарной работой силы F
на
перемещении
называют
скалярную величину
,
Дж,
где a
— угол между векторами
и
;
— элементарный
путь.
Работа силы на конечном участке
траектории 12 равна:
Мощность определяет скорость совершения работы: Р = dA/dt, Дж/с = Вт.
При
движении тела со скоростью
под действием силы
мощность,
развиваемая этой силой, за бесконечно
малый промежуток времени dt
равна
скалярному
произведению вектора силы на вектор
скорости:
, Вт.
Кинетическая
энергия тела представляет собой энергию
его движения.
Движение возникает и происходит под
действием силы
.
Энергия
движущегося тела при этом возрастает
на величину
совершенной силой работы. Иными словами,
работа dA
силы
на
бесконечно малом пути, который тело
прошло за время возрастания скорости
от 0 до
,
идет на увеличение кинетической
энергии:
dA = dEK.
Используя
для некоторой инерциальной системы
второй закон
Ньютона F=
md/dt
и
умножая скалярно обе части равенства
на перемещение
,
получим
.
С
учетом того, что
.
Откуда
,
Дж.
Итак, тело массой т,
движущееся
со скоростью v,
обладает кинетической энергией ЕK=mv2/2,
Дж.
Очевидно, что кинетическая энергия зависит только от массы и скорости тела. Траектория движения не оказывает влияния на величину Ек .
Связь между изменением кинетической энергии материальной точки и работой силы, приложенной к ней:
dA=mνdν;
.
Пусть
некоторое тело перемещается в силовом
поле по некоторой
кривой 12. Характер сил, действующих на
тело,
может быть разнообразным.
Это могут быть силы тяготения,
электрические силы и
др.
Рассмотрим
работу, совершаемую
при движении тела в однородном
поле силы тяжести,
которое имеет место вблизи
поверхности Земли, где сила тяжести
незначительно зависит от
высоты (пока высота h
мала
по сравнению с радиусом земного шара.
Если разбить кривую 12 на элементарные
отрезки, то каждый
из них можно считать прямолинейным.
Элементарная работа
dA,
совершаемая
при передвижении по отрезку ds,
будет
равна dA
= Gcosads,
где
G
— сила
тяжести, действующая на тело; α — угол
между направлением силы тяжести и
направлением перемещения. Из рисунка
следует, что dscosa
= dh.
Здесь
dh
— бесконечно
малое изменение высоты положения тела
при его перемещении на отрезок ds.
Работа
силы тяжести при перемещении из состояния
1 в состояние 2 будет равна
Из равенства (3.3) следует вывод о том, что работа силы тяжести не зависит от формы и длины пути, а определяется величиной вертикального отрезка h между начальным и конечным положением тела. Оказывается, что в природе есть и другие силы, помимо силы тяжести, которые обладают тем же замечательным свойством: работа по перемещению тела зависит только от положения начальной и конечной точек пути и не зависит от вида траектории и скорости движения. Такие силы, называют потенциальными. При движении материальной точки в поле потенциальных сил вводится понятие о потенциальной энергии, через разность которой определяется работа сил. Если тело перемещается из некоторой точки пространства 1 в другую точку пространства 2 и если при этом действующие на него силы совершают работу А12, то для потенциальных сил эта работа зависит только от положения точек 1 и 2. Это означает, что можно ввести такую физическую величину Еп, которая характеризует положение тела в поле потенциальных сил и которую можно назвать потенциальной энергией. Работа Ап в этом случае будет равна разности значений Еп1 и Еп2, которые принимает потенциальная энергия Еп в точках 1 и 2,
А = Ел1- Еп2.
В том случае, когда значение потенциальной энергии в одной из точек пространства (в данном случае из двух) равно нулю, можно говорить о значении потенциальной энергии в конкретной точке.
Потенциальная энергия тела с массой т, поднятого на высоту h, равн mgh. При падении тела сила тяжести совершает положительную работу А = mgh. Потенциальная энергия при этом убывает. Работа силы тяжести при подъеме тела отрицательна, а потенциальная энергия его возрастает.
Для изолированной системы, в которой отсутствуют непотенциальные силы, например сила трения, можно утверждать, что сумма кинетической и потенциальной энергий остается постоянной, то есть Е = Ек + Еп = const. Это утверждение называют законом сохранения механической энергии. Из закона следует, что при переходе системы из одного положения в другое могут меняться кинетическая и потенциальная энергии. Но их сумма остается постоянной.