
- •1. Достоинства и недостатки газлифтного способа эксплуатации.
- •2 Предназначение системы сбора и подготовки скважинной продукции.
- •Может ли обводняться продукция скважин до начала работы системы ппд?
- •1. Освоение скважин, виды освоения.
- •2. Основные элементы системы сбора (схема).
- •Зачем нужна система ппд?
- •1. Регулирование производительности и напора уэцн.
- •2. Схема самотечной двухтрубной системы сбора нефти.
- •В чем разница между коэффициентами обводненности и водонасыщенности?
- •1. Динамометрирование шсну
- •Текущая и накопленная добыча нефти?
- •1. Оптимальное, допустимое и предельное давления на приеме эцн.
- •2. Мероприятия по сбору и транспорту на горной местности.
- •Определение коэффициента обводненности в промысловых условиях.
- •1. Факторы, учитываемые при подборе исполнения, типоразмера и определения глубины спуска уэцн.
- •2. Схема герметизированной системы сбора нефти, газа и воды на морских месторождениях, расположенных вблизи от берега.
- •3.Формула Дарси, Дюпюи, область применения.
- •1. Глушение скважин, технология, область применения.
- •2. Схема герметизированной системы сбора нефти, газа и воды на морских месторождениях, расположенных вдали от берега.
- •Причины образования конусов подошвенной воды и влияние на них анизотропии?
- •1. Баланс энергий работающей скважины по различным способам эксплуатации.
- •2. Принципиальная схема Спутника-а.
- •3.Площадные системы заводнения.
- •1.Область применения винтовых установок уэвн и ушвн.
- •2. Принципиальная схема Спутника-в.
- •3.Рядные системы заводнения.
- •1.Технология эксплуатации скважин высокодебитного фонда
- •2.Классификация трубопроводов.
- •3.Основные виды внутриконтурного заводнения.
- •11 Билет
- •1. Показатели использования фонда скважин, оборудованных уэцн.
- •2. Определение потерь напора на трение для всех режимов.
- •3. Упругий режим.
- •12 Билет
- •1 . Геолого-физические критерии применения методов воздействия на пзп нагнетательных скважин.
- •2. Порядок определения пропускной способности трубопровода графоаналитическим методом.
- •3. Тенденции в истории развития нефтедобычи
- •13 Билет
- •1. Несовершенство скважин и его учет.
- •2. Порядок определения диаметра трубопровода графоаналитическим методом.
- •3. Геолого – промысловые критерии при выборе разнопластовых сеток скважин.
- •14 Билет
- •1 Особенности исследования нагнетательных скважин.
- •2. Принципиальная схема абсорбции.
- •3. Газонапорный режим.
- •15 Билет
- •1. Методы снижения пусковых давлений газлифтных скважин.
- •2. Схема совмещенного аппарата нагрева и отстаивания.
- •3. Сущность упруговодонапорного режима.
- •16 Билет
- •1. Ликвидация песчаных пробок в скважинах.
- •2. Состав и структура солеотложений в системе сбора.
- •3. Что такое гнк и внк?
- •17 Билет
- •1. Способы борьбы с вредным влиянием газа на работу шсну.
- •2. Методы удаления солеотложений в системе сбора.
- •3. Как определить текущий кин?
- •18 Билет
- •2. Коэффициент подачи шсну.
- •2. Состав и классификация аспо в системе сбора.
- •3. Перечислить факторы, влияющие на полноту извлечения нефти на объектах разработки (конечный кин).
- •19 Билет
- •1. Осложнения при газлифтной эксплуатации
- •2. Основные факторы образования аспо в системе сбора.
- •3. Технологии регулирования разработки нефтяных месторождений
- •20 Билет
- •1. Исследование скважин с уэцн.
- •2. Технологии предотвращения и борьбы с аспо в системе сбора.
- •3. Технология форсированных отборов из нефтяных пластов.
- •1.Способы борьбы с вредным влиянием газа на работу уэцн.
- •2. Виды коррозии в системе сбора.
- •3. Сущность потокоотклоняющих технологий (применение вус, гос и ос).
- •1.Оптимизация работы добывающих скважин
- •2. Факторы коррозионного воздействия на трубопровод.
- •1. Температура и рН воды
- •2. Содержание кислорода в воде
- •3. Парциальное давления со2
- •4. Минерализация воды
- •5. Давление
- •6. Структурная форма потока
- •3. Методика определения технологической эффективности каких – либо гтм на месторождениях нефти.
- •1. Виды и условия фонтанирования скважин.
- •2. Защита трубопроводов от внутренней коррозии.
- •3. Особенности разработки нефтяных месторождений с недонасыщенными коллекторами.
- •1. Технологии оптимизации режимов работы скважин с эцн.
- •2.Защита трубопроводов от внешней коррозии.
- •3. Сущность барьерного заводнения.
- •1. Ремонт скважин, оборудованных уэцн.
- •2.Основные факторы, вызывающие пульсацию и влияющие на их величину и частоту.
- •3. Особенности строения нефтегазовых залежей (месторождений).
- •1. Вывод скважин, оборудованных уэцн, на режим.
- •2. Схема предварительного разгазирования нефти. Понятие сепарации и ступени сепарации.
- •3. Значения кин для нефтяных и нефтегазовых месторождений (объектов разработки).
- •1. Освоение добывающих скважин.
- •2. Принципиальная схема упн с совмещенными аппаратами.
- •3. Как обосновываются коэффициенты вытеснения, коэффициенты охвата воздействием и коэффициенты заводнения?
- •1. Состав жидкостей разрыва при грп.
- •2. Классификация сепараторов.
- •3. Обоснование кин на стадии составления технологических схем на разработку нефтегазовых месторождений
- •Извлекаемые запасы и коэффициенты извлечения нефти, нефтяного газа, конденсата определяются на основании повариантных технологических и технико-экономических расчетов.
- •1. Область применения ско.
- •2. Определение эффективности работы сепаратора.
- •3. Технологии интенсификации разработки нефтяных месторождений.
- •1. Освоение нагнетательных скважин.
- •2. Конструкция горизонтального сепаратора с упог.
- •3. Технологии регулирования разработки нефтяных месторождений
- •1. Область применения глубинно – насосной эксплуатации.
- •2. Конструкция гидроциклонного сепаратора.
- •3.Методика разукрупнения эксплуатационных объектов нефтяных месторождений.
- •1. Ликвидация парафино-гидратных пробок в скважинах.
- •2. Схема кожухотрубчатого теплообменника и аво.
- •3.Гидродинамическая сущность и технология внедрения циклического заводнения нефтяных месторождений.
- •1. Ловильный инструмент для крс.
- •2. Методика расчета количества газа, выделившегося по ступеням сепарации.
- •1. Гидродинамические мун:
- •2. Физико-химический мун:
- •3. Тепловые методы (термические мун):
- •4. Газовые методы:
- •2. Скорость осаждения при ламинарном режиме осаждения.
- •1. Виды индикаторных диаграмм.
- •2. Схема глобул воды в нефти. Типы эмульсий.
- •3.Назначение индикаторных(трассерных)исследований нефтяных месторождений
- •1.Виды гидродинамических исследований на скважинах, оборудованных уэцн.
- •2.Схема упсв
- •3.Задачи, решаемые в анализе разработки нефтяных месторождений.
- •1. Факторы, снижающие подачу шсн.
- •2. Конструкция трехфазных сепараторов.
- •3.Задачи, стоящие перед технологическими схемами на разработку нефтегазовых месторождений.
- •1.Влияние газа и вязкости жидкости на рабочие характеристики эцн.
- •2. Факторы, влияющие на образование эмульсий.
- •3.Технологии совместной разработки многопластовых залежей
- •1.Виды и условия фонтанирования скважин.
- •2Предотвращение образования стойких эмульсий.
- •3.Перечислить задачи, решаемые при геолого–промысловом изучении залежей нефти.
- •1Мероприятия по предупреждению образования аспо при эксплуатации скважин
- •2.Основные методы разрушения эмульсий.
- •3.Задачи гидродинамических методов контроля за разработкой нефтяных месторождений
- •1 Жидкости и материалы для проведения грп
- •2. Основные уравнения гидродинамики, используемые в гидравлическом расчете трубопровода.
- •3.Задачи геофизических методов контроля за разработкой нефтяных месторождений
- •1.Этапы проведения грп
- •2. Блочная упн с раздельными аппаратами
- •3. Задачи промысловых методов контроля за разработкой нефтяных месторождений
- •1.Причины ликвидации скважин.
- •2.Принципиальная схема гравитационного осаждения.
- •3.Методы контроля за разработкой нефтяных и нефтегазовых месторождений
- •1.Регулирование работы скважин с уэцн.
- •2.Принципиальная схема абсорбции.
- •3.Особенности разработки месторождений высоковязких нефтей.
- •1.Влияние газа на работу шсну и методы его снижения
- •2.Схема стационарной упн при двутрубной системе сбора.
- •3.Основные решения упругого режима, которые используются в расчетах при составлении проекта пробной эксплуатации
- •1.Режимы работы ушсн.
- •2.Принципиальные схемы отстойных аппаратов различного типа.
- •3.Задачи проекта пробной эксплуатации.
- •1.Показатели использования фонда скважин, оборудованных ушсн.
- •2.Схема работы гидравлического предохранительного клапана и устройство дыхательного клапана.
- •3.Технологии выработки остаточных запасов нефти.
- •1.Критерии выбора объекта для проведения грп.
- •2.Схемы подогревателей нефти и печей.
- •3.Основные документы на разработку нефтяных месторождений (мелких и крупных).
- •1.Регулирование работы скважин с уэцн.
- •2.Электродегидраторы, конструкция, область применения.
- •3.Стадии разработки нефтяных месторождений при заводнении и их характеристика.
- •1.Технологии предотвращения образования аспо в скважинах.
- •2.Методы снижения потерь углеводородов при испарении нефти в резервуарах.
- •3.Прогнозирование показателей разработки по фактическим данным с помощью характеристик вытеснения.
- •Билет 51
- •51. Удаление аспо со стенок нкт скважин, оборудованных уэцн.
- •51. Схема расположения оборудования на наземном вертикальном цилиндрическом резервуаре.
- •51. Методики гидродинамических расчетов при прогнозировании показателей разработки нефтяного месторождения.
- •52. Причины консервации скважин.
- •52. Методика расчета количества газа, выделившегося по ступеням сепарации.
- •52. Основные технико-технологические ограничения, накладываемые на гидродинамические модели пластов при проектировании разработки нефтяных месторождений.
- •53. Факторы, снижающие подачу шсн.
- •53. Свойства эмульсии
- •53 Расчеты процесса вытеснения нефти водой в системе скважин по схеме поршневого вытеснения.
- •54. Осложнения, возникающие при работе скважин, оборудованных ушсн.
- •54. Принципиальная схема стабилизационной колонны.
- •54 .Функция Бакли-Леверетта. Расчет непоршневого вытеснения нефти водой.
- •55. Причины снижения производительности уэцн.
- •55. Задачи, решаемые при проектировании трубопроводов на месторождении.
- •55.Типы моделей пластов (объектов разработки).
- •Билет 56
- •56. Методы борьбы с отложениями аспо в скважинах с шсну.
- •56. Параметры качества товарной нефти.
- •56. Принципы выделения эксплуатационных объектов при проектировании систем разработки.
- •57. Регулирование работы скважин с шсну.
- •57 Деэмульгаторы, производственные показатели эффективности.
- •57. Геолого-промысловое изучение залежей нефтей в многопластовом месторождении.
- •58. Назначение и сущность метода исследований на установившихся режимах.
- •58. Схема резервуара – флотатора.
- •58. Последовательность работ в проектировании рациональной системы разработки нефтяного месторождения.
- •59. Методика выводы скважины на режим.
- •59. Схемы водозаборов.
- •59. Основные критерии объединения залежей в один объект разработки.
- •60. Определение глубины спуска уэцн из условия рациональной эксплуатации скважин.
- •60. Принципиальная схема низкотемпературной сепарации.
- •60. Системы разработки нефтяных месторождений (понятие о системе разработки и классификация систем разработки).
2. Определение потерь напора на трение для всех режимов.
Потеря
напора на преодоление трения hT
по длине трубопровода круглого сечения
при любом режиме течения определяется
по формуле Дарси-Вейсбаха:(1);
Тогда
потери давления будут
(2);
Если
скорость w
выразить через объемный расход и площадь
сечения из уравнения
то
уравнение (1) примет вид:
(3)
В
наклонном трубопроводе:
(4);
(5)
+ - когда сумма участков подъема по высоте больше суммы участков спуска; - - когда наоборот. где l – длина трубопровода, м; d- внутренний диаметр, м; ρ- плотность жидкости, кг/м3; ΔZ- разность геодезических отметок начала и конца трубопровода, м; g- ускорение силы тяжести, м/с2;
λ-
коэф. гидравлич. сопр-я, который в общем
случае зависит от числа Рейнольдса Re
и относительной шероховатости стенки
тр-да
(6);
где ε– относительная шероховатость.
(7)
где Δ– абсолютная эквивалентная
шероховатость выбирается по таблице,
мм; d-
внутренний диаметр трубы, мм.
Абсолютная эквивалентная шероховатость – это такая высота шероховатости, при которой в квадратичной зоне сопротивления потери напора равны потерям напора для данной естественной шероховатости трубы.
Для ламинарного режима движения (Rе < Rекр) коэффициент гидравлического сопротивления зависит только от параметра Рейнольдса:
Rекр = 2320
(8). Если учесть,
что
(9)
и подставить выражение (9) в (8), то получим
(10)
В
этом случае выражение (1) принимает вид
формулы Пуазейля:
(11);
(12)
При турбулентном режиме движения (Rе > Rекр) различают три зоны сопротивления.
1.
Зона гидравлически гладких труб ()
:
- (13)
формула Блазиуса, используемая при Rе
≤105.
Здесь сопротивление шероховатых и
гладких труб одинаково.
В зависимости от скорости течения и вязкости жидкости одна и та же труба может быть гидравлически гладкой и гидравлически шероховатой.
2. Зона шероховатых труб или смешанного трения
():
- (14)
формула Альтшуля.
3. Зона вполне шероховатых труб или квадратичная зона
():
(15)
- формула Шифринсона.
Для нефтепроводов наиболее характерны режимы гладкого или смешанного трения.
3. Упругий режим.
Условие упругого режима – превышение Рпл, точнее давления во всех точках пласта, над Рнас нефти газом Рн. При этом Рзаб не ниже Рн, нефть находится в однофазном состоянии. Созданное в доб. скв. возмущение давления (депрессия) распространяется с течением времени в глубь пласта (наблюдается первая фаза упругого режима). Вокруг скважины образуется увеличивающаяся депрессионная воронка.
Приток
нефти происходит за счет энергии
упругости жидкости (нефти), связанной
воды и породы — энергии их упругого
расширения. При снижении давления
увелич. объем нефти и связанной воды и
уменьшается объем пор; соответствующий
объем нефти поступает в скважины.
Затем депрессионные воронки отдельных
скважин, расширяясь, сливаются, образуется
общая депрессионная воронка, которая
по мере отбора нефти распространяется
до границ залегания залежи.
Если залежь литологически или тектонически ограничена (замкнута), то в дальнейшем наступает вторая фаза упругого режима, в течение которой на контуре ограничения пласта, совпадающим с контуром нефтеносности, давление уменьшается во времени; уменьшается также давление в залежи. Упругий режим может быть продолжительным при значительном недонасыщении нефти газом. В противном случае этот режим быстро может перейти в другой вид. В объеме всего пласта упругий запас нефти составляет обычно малую долю (приблизительно 5— 10 %) по отношению к общему запасу, однако он может выражать довольно большое количество нефти в массовых единицах. В случае ограниченности залежи во второй фазе проявляется разновидность упругого режима - замкнуто-упругий режим.
Если залежь не ограничена, то общая депрессионная воронка будет распространяться в законтурную водоносную область, значительную по размерам и гидродинамически связанную с залежью. Упругий режим будет переходить во вторую разновидность — упруговодонапорный режим. Упруговодонапорный режим обусловлен проявлением энергии упругого расширения нефти, связанной воды, воды в водоносной области, пород пласта в нефтяной залежи и в водоносной области и энергии напора краевых вод в водоносной области.
Для замкнуто-упругого и упруговодонапорного режимов характерно значительное снижение давления в начальный период постоянного отбора нефти (или снижение текущего отбора при постоянном давлении р3). При упруговодонапорном режиме темп дальнейшего снижения давления (текущего отбора) замедляется. Это связано с тем, что зона возмущения охватывает увеличивающиеся во времени объемы водоносной области и для обеспечения одного и того же отбора нефти требуется уже меньшее снижение давления. Если внешняя граница водоносной области находится выше (на более высокой гипсометрической отметке), чем забой скважины, то кроме энергии упругости действует потенциальная энергия напора (положения) контурной воды.
Рис. 8 Динамика основных показателей разработки нефтяной залежи при упруговодонапорном режиме.
ΔP(r,t)=Po-P(r,t)=Θμ/(4πkh)[-Ei(-r2/4æt)] – это основная формула теории упругого режима-Ei – интегрально-показательная функция.
Запас упругой энергии обусловлен упругоемкостью системы, величина которой определяется след. образом: β=-ΔV/(VΔP), Pгор=Pэф. скелета +Pжидк.
Для насыщенных пористых сред упругоемкость записывается обобщенно: β*=mоп βж+ βскел.