
- •Конспект лекций
- •Оглавление
- •Элементы зонной теории твердых тел
- •Статистика электронов и дырок в полупроводниках
- •Литература…………………………………………………………. .73
- •Приложение 2 Фазовая и групповая скорости, фононы………….. 87
- •1. Элементы зонной теории твердых тел
- •1.1 Электронный газ в периодическом потенциальном поле
- •1.2. Зоны Бриллюэна
- •1.3. Эффективная масса электрона
- •1.4. Зонная схема кристаллических тел - проводники, диэлектрики, полупроводники
- •2. Статистика электронов и дырок в полупроводниках
- •2.1. Собственные и примесные полупроводники
- •2.2. Зависимость концентрации свободных носителей в полупроводнике от положения уровня Ферми
- •2.3. Уровень Ферми и равновесная концентрация носителей в невырожденных собственных полупроводниках
- •2.4. Положение уровня Ферми и концентрация носителей в примесных полупроводниках
- •2.5. Неравновесные носители, рекомбинация носителей
- •2.6. Поверхностная рекомбинация
- •2.7. Уравнение непрерывности
- •3. Электропроводность твердых тел
- •3.1. Движение электронов под действием внешнего поля
- •3.2. Зависимость подвижности носителей заряда от температуры
- •3.3. Электропроводность чистых металлов
- •3.4. Электропроводность собственных полупроводников
- •3.5. Электропроводность примесных полупроводников
- •3.6. Диффузионные уравнения
- •4. Контактные явления
- •4.1. Контакт электронного и дырочного полупроводников
- •4.2. Равновесное состояние р-n-перехода
- •4.3. Зонная диаграмма р-n-перехода при положении внешнего поля
- •4.4. Вах тонкого р-n-перехода
- •5. Поверхностные явлении
- •5.1. Поверхностные состояния
- •5.2. Эффект поля. Мдп-структуры
- •5.3. Вольт-фарадная характеристика
- •6. Полевые транзисторы
- •6.1. Общие сведения
- •6.2. Полевые транзисторы с изолированным затвором
- •6.3 Статические характеристики
- •6.4. Основные параметры мдп-транзисторов
- •6.5 Полевые транзисторы с управляющим
- •7. Электрофизические свойства p-n-переходов и структур металл-диэлектрик-полупроводник
- •7.1. Барьерная и диффузионная емкость p-n-перехода
- •7.2. Механизмы пробоя p-n-переходов
- •7.3. Механизмы переноса заряда через тонкие диэлектрические пленки
- •Сильно-полевая туннельная инжекция и инжекционная модификация.
- •Литература
- •Прямоугольный барьер полубесконечной толщины
- •Приложение 2 Фазовая и групповая скорости, фононы
4.2. Равновесное состояние р-n-перехода
Концентрация дырок в р-области на несколько порядков превосходит концентрацию их в n-области, а концентрация электронов в n-области, на много превосходит концентрацию электронов в р-области. Такое различие в концентрации однотипных носителей в контактирующих областях полупроводника приводит к возникновению диффузионных потоков электронов из n-области в р-область и диффузионного потока дырок из р-области в n-область. При этом область n, из которой диффундировали электроны, заряжается положительно, а область р, из которой диффундировали дырки - отрицательно. Область же р-n-перехода обеднена основными носителями заряда. Неосновные носители заряда рекомбинируют с основными. Поскольку область р-n-перехода обеднена основными носителями заряда, то она будет обладать большим сопротивлением, чем электронейтральные р-n-слои. В целом же переход электронейтрален, т.к. положительный и отрицательный заряды в смежных слоях одинаковы. Поэтому наличие различий в концентрации примесей в смежных слоях приводит к различию в ширине областей занимаемых пространственными зарядами. В слое с меньшей концентрацией примеси ширина области пространственного заряда больше.
Нескомпенсированные заряды ионов примесей вызывают появление электрического поля направленного от положительного заряда к отрицательному, т.е. из слоя n в слой р. Это поле будет препятствовать дальнейшей диффузии. В равновесном состоянии диффузионные токи уравновешиваются дрейфовыми токами. Полный ток при этом через р-n-переход равен нулю.
Возникновение электрического поля в р-n-переходе приводит к появлению разности потенциалов между смежными слоями, которая называется контактной разностью потенциалов.
Рассмотрим зонную схему для равновесного состояния р-n перехода. Как было показано ранее, уровень Ферми является общим при контакте тел, находящихся в термодинамическим равновесии. Поэтому уровни Ферми в n- и р областях должны находиться на одинаковом уровне, что вызывает искривление энергетических зон. На рис. 4.5 показаны зонные схемы р- и n- полупроводников до соприкосновения. Зонная схема р-n-перехода в равновесном состоянии показана на рис. 4.6.
Образующаяся в р-n-переходе контактная разность потенциалов VK создает в р-n-переходе потенциальный барьер qVK=o препятствующий переходу электронов из n-области в р-область, а дырок из р-области в n-область.
, (4.2.1)
. (4.2.2)
Ход электростатического потенциала противоположен ходу зон рис. 4.7.
no po
ppo nno ppo pno dp dn X
Na=Np
Рис. 4.4
p n
Ec Ecp
EF
Ei Ev Ei EF
Ev
Рис. 4.5
U0 Ecp Ecn Eip Ecn EF Evp Evp dp dn
Рис. 4.6
X
Рис. 4.7
. (4.2.3)
Из закона действующих масс следует
, (4.2.4)
. (4.2.5)
Из (4.2.4) и (4.2.5) можно получить
, (4.2.6)
. (4.2.7)
Подставим (4.2.6) и (4.2.7) в (4.2.2)
. (4.2.8)
Следовательно, чем сильнее легированы области полупроводника, т.е. чем больше nno=ND и ppo=NA, тем больше контактная разность потенциалов.
Из (4.2.8) можно получить формулы, выражающие равновесные концентрации неосновных носителей заряда через равновесные концентрации основных носителей заряда в противоположных областях:
, (4.2.9)
. (4.2.10)