
- •Изучаемые вопросы:
- •1. Предмет химии. Значение химии в изучении природы и развитии техники
- •2. Основные количественные законы химии
- •Вопросы для самоконтроля
- •Литература
- •Лекция 2 (2 ч)
- •Тема 1. Строение вещества. Периодическая система элементов д. И. Менделеева
- •Изучаемые вопросы:
- •1.1. Современная модель строения атома
- •1.2. Квантовые числа
- •Орбитальное квантовое число 0 1 2 3 4
- •1.3. Строение многоэлектронных атомов
- •1.4. Периодические свойства элементов
- •1.5. Периодическая система элементов д. И. Менделеева
- •Вопросы для самоконтроля:
- •Литература:
- •Лекция 3 (2 ч)
- •Тема 2. Химическая связь и взаимодействия между молекулами
- •Изучаемые вопросы:
- •2.1. Общая характеристика химической связи
- •2.2. Типы химической связи
- •2.3.Типы межмолекулярных взаимодействий
- •2.4. Пространственная структура молекул
- •Число гибридных орбиталей равно числу исходных. При смешении s и р-орбиталей образуется две sp-гибридных орбитали, угол между осями которых равен 180°.
- •Вопросы для самоконтроля:
- •Вопросы для самостоятельной работы:
- •Литература:
- •Лекция 4 (2 ч)
- •Тема 3. Агрегатное состояние вещества
- •Изучаемые вопросы:
- •3.1. Общая характеристика агрегатного состояния вещества
- •3.2. Газообразное состояние вещества. Законы идеальных газов. Реальные газы
- •3.3. Характеристика жидкого состояния вещества
- •3.4. Характеристика твёрдого состояния
- •Характеристики некоторых веществ
- •3.5. Типы кристаллических решёток
- •Вопросы для самоконтроля:
- •Вопросы для самостоятельной работы:
- •Литература:
- •Лекции 5-6 (4 ч)
- •Тема 4. Энергетика химических процессов
- •Изучаемые вопросы:
- •4.1. Общие понятия термодинамики
- •4.2. Первый закон (начало) термодинамики. Внутренняя энергия системы. Энтальпия системы
- •4.3. Термохимия. Тепловые эффекты химических реакций
- •4.4. Закон Гесса и следствия из него
- •I путь.
- •II путь.
- •4.5. Основные формулировки второго закона (начала) термодинамики
- •4.6. Принцип работы тепловой машины. Кпд системы
- •4.7. Свободная и связанная энергии. Энтропия системы
- •4.8. Энергия Гиббса, энергия Гельмгольца и направленность химических реакций
- •Для определения температуры (Тр), выше которой происходит смена знака энергии Гиббса реакции, можно воспользоваться условием
- •Вопросы для самоконтроля:
- •Литература:
- •Лекции 6-7 (4 ч)
- •Тема 5. Химическая кинетика и катализ
- •Изучаемые вопросы:
- •5.1. Понятие о химической кинетике
- •5.2. Факторы, влияющие на скорость химических реакций. Закон действующих масс
- •5.3. Классификация химических реакций по молекулярности и по порядку
- •5.4. Кинетические уравнения реакци первого и второго порядка
- •Поле интегрирования
- •5.5. Теория активизации молекул. Уравнение Аррениуса
- •5.6. Особенности каталитических реакций. Теории катализа
- •Вопросы для самоконтроля:
- •Литература:
- •Лекция 9 (2 ч)
- •Тема 6. Химическое равновесие
- •Изучаемые вопросы:
- •6.1. Обратимые и не обратимые реакции. Признаки химического равновесия
- •6.2. Константа химического равновесия
- •6.3. Факторы, влияющие на химическое равновесие. Принцип Ле-Шателье
- •6.4. Правило фаз Гиббса. Диаграмма состояния воды
- •Правило фаз для воды имеет вид
- •6.5. Понятие о химическом сродстве веществ. Уравнения изотермы, изобары и изохоры химических реакций
- •Вопросы для самоконтроля:
- •Литература:
- •Лекции 10-12 (6 ч)
- •Тема 7. Растворы. Дисперсные системы
- •Изучаемые вопросы:
- •7.1. Сольватная (гидратная) теория растворения
- •7.2. Общие свойства растворов
- •7.3. Типы жидких растворов. Растворимость
- •7.4. Свойства слабых электролитов
- •7.5. Свойства сильных электролитов
- •7.6. Классификация дисперсных систем
- •7.7. Получение коллоидно-дисперсных систем
- •7.8. Устойчивость коллоидных растворов. Коагуляция. Пептизация
- •7.9. Свойства коллоидно-дисперсных систем
- •Вопросы для самоконтроля:
- •Литература:
- •Лекция 13 (2ч)
- •Тема 8. Кислотно-основные и окислительно-восстановительные свойства вещества
- •Изучаемые вопросы:
- •8.1. Особенности обменных процессов
- •8.2. Особенности окислительно-восстановительных процессов
- •Вопросы для самоконтроля:
- •Литература:
- •Лекции 14-15 (4 ч)
- •Тема 9. Электрохимические системы
- •Изучаемые вопросы:
- •9.4. Электродвижущая сила гальванического элемента.
- •9.1. Общие понятия электрохимии. Проводники первого и второго рода
- •9.2. Понятие об электродном потенциале
- •9.3. Гальванический элемент Даниэля-Якоби
- •9.4. Электродвижущая сила гальванического элемента
- •9.5. Классификация электродов
- •9.6. Поляризация и перенапряжение
- •9.7. Электролиз. Законы Фарадея
- •9.8. Коррозия металлов
- •Лекция 16 (2 ч)
- •Тема 10. Органические полимерные материалы
- •10.1. Методы получения полимеров
- •10.2. Строение полимеров
- •10.3. Свойства полимеров
- •10.4. Применение полимеров
- •Литература:
- •Лекция 17 (2 ч)
- •Тема 11. Химическая идентификация и анализ вещества
- •11.1. Качественный анализ вещества
- •Некоторые реагенты для идентификации катионов
- •11.2. Количественный анализ вещества. Химические методы анализа
- •11.3. Инструментальные методы анализа
- •Атомно-эмиссионная спектроскопия – группа методов анализа, основанных на измерении длины волны и интенсивности светового потока, излучаемого возбужденными атомами в газообразном состоянии.
- •Вопросы для самоподготовки:
- •Литература:
5.6. Особенности каталитических реакций. Теории катализа
Скорость химической реакции можно регулировать с помощью катализатора. Вещества, которые участвуют в реакциях и изменяют (чаще всего увеличивают) ее скорость, оставаясь к концу реакции в первоначальном виде и количестве, называются катализаторами. Само изменение скорости химической реакции в присутствии катализаторов получило название катализа.
Если от добавления катализатора к реагирующей смеси скорость реакции увеличивается, катализ называют положительным, если же реакция замедляется, то катализ называют отрицательными, а катализатор ингибитором.
Катализаторами могут быть самые разнообразные вещества в любом из трех агрегатных состояний: кислоты, соли, основания, оксиды, металлы, их атомы, молекулы или ионы, различные органические и органоминеральные соединения, газообразные вещества. В ряде случаев каталитическое действие оказывают всевозможные примеси (например, пыль), поверхность стенок сосуда, а также продукты реакции (в этом случае реакция называется автокаталитическая).
Катализ идет за счет перераспределения химических связей или сил электростатического взаимодействия участников реакции, механизм действия катализаторов связан с уменьшением энергии активации реакции за счет образования промежуточных соединений или образования активированного комплекса, при этом скорость процесса увеличивается в 2-3 раза.
Участие катализатора в реакции не отражается на стехиометрических коэффициентах и величине теплового эффекта химической реакции, а по сравнению с массой реагирующих веществ масса катализатора мала, но к концу реакции он выделяется в неизменном виде.
Катализатор в одинаковой мере действует как на скорость прямой, так и обратной реакции. Он ускоряет лишь наступление состояния химического равновесия.
Катализаторы действуют избирательно, то есть, скорость одних реакций данный катализатор ускоряет, а скорость других не изменяет или замедляет.
В ряде случаев присутствие посторонних веществ изменяет действие катализаторов: те вещества, которые усиливают положительную активность катализаторов, сами по себе являясь неактивными, называются промоторами или активаторами; те вещества, которые замедляют или практически полностью подавляют действие катализатора, называются каталитическими ядами; существуют вещества, присутствие которых не влияет на активность катализаторов (нейтральные).
По агрегатному состоянию каталитические реакции делят на гомогенные и гетерогенные.
Гомогенным катализом называют катализ, в котором катализатор и реагирующие вещества образуют одну фазу, то есть, находятся в одном агрегатном состоянии.
Механизм воздействия катализатора на химическую реакцию находит свое объяснение в теории промежуточных соединений. Катализатор с одним из реагирующих веществ образует непрочное промежуточное соединение, которое легко реагирует со вторым компонентом реакции. Это положение подтверждается тем, что в ряде случаев удалось выделить соединения катализатора с одним из компонентов реакции.
В общем виде для реакции типа А + В С весь каталитический процесс в присутствии катализатора К можно представить следующими уравнениями:
А = К АК; АК + В С + К.
Как видим, катализатор образует неустойчивое промежуточное соединение АК. Скорость данной каталитической реакции, в конечном счете, зависит от того, как быстро образуется и разлагается это промежуточное соединение. Например, если скорость расщепления промежуточного соединения АК на исходные компоненты намного выше, чем превращение промежуточного соединения в конечный продукт, скорость реакции будет мала. И, наоборот, если скорость превращения промежуточного соединения в конечный продукт значительно больше скорости его разложения, каталитическая реакция будет протекать очень быстро.
Опыт показывает, что подавляющее большинство каталитических процессов протекает со скоростью, имеющей промежуточное значение между этими крайними пределами.
При гетерогенном катализе катализатор и реагирующие вещества находятся в разных фазах, чаще всего катализатором является твердое тело, а реагирующие вещества находятся в жидком или газообразном состоянии и реакция протекает на поверхности раздела двух фаз, то есть, на поверхности катализатора. Поэтому гетерогенные каталитические процессы часто называют просто контактными, а твердые катализаторы – контактными веществами.
Как правило, все гетерогенные каталитические реакции протекают в несколько стадий: 1) диффузия исходных веществ к поверхности катализатора; 2) адсорбция этих веществ на поверхности катализатора, при этом происходит деформация связей в молекулах; 3) химическое превращение адсорбированных (и активированных) молекул; 4) десорбция продуктов реакции; 5) диффузия продуктов реакции. Скорость процесса в целом зависит от скорости самой медленной стадии.
Опыт показывает, что причина и механизм гетерогенного катализа заключается в том, что катализ связан с адсорбцией реагирующих веществ на поверхности катализатора, а в каталитической реакции принимает участие не вся поверхность катализатора, а лишь небольшая ее часть, состоящая из отдельных участков, называемыми активными центрами.
Наиболее простое объяснение образования активных центров на поверхности твердых катализаторов заключается в наличии неровностей на поверхности. Атомы твердого вещества, расположенные в углублениях, будут энергетически более уравновешенными по сравнению с атомами, находящимися на выступах шероховатой поверхности катализатора. На этих центрах, имеющих свободное силовое поле, и будет в первую очередь происходить адсорбция реагирующих молекул.
В настоящее время имеется целый ряд теорий, объясняющих механизм гетерогенного катализа. Согласно мультиплетной теории А. А. Баландина, между параметрами кристаллической решетки катализатора и длинами химических связей реагентов и продуктов реакции необходимо структурное соответствие. На активных центрах катализатора образуются мультиплетные комплексы, то есть промежуточные соединения и происходит перераспределение связей между исходными веществами и продуктами реакции.
На скорость каталитических реакций влияет площадь поверхности катализатора или его степень дисперсности, температура (обычно увеличивает скорость процесса), давление (для реакций, идущих с изменением объема, увеличение давления обычно увеличивает скорость), природа растворителя (особенно его полярность).
В настоящее время наиболее распространенными промышленными катализаторами являются Pt, Pd, Rh, Fe, Ni, CuO, RuO2, V2O5, NiO, Fe2O3, ZnO, SiO2, Cr2O3, Al2O3, Al2Cl3, Ag2O, WO3, алюмосиликаты. Их используют при получении аммиака, азотной и серной кислот, метанола, водорода, хлора, этилена и других продуктов химической промышленности.