Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ит экзаменационыые вопросы (ответы ).docx
Скачиваний:
3
Добавлен:
21.12.2018
Размер:
58.31 Кб
Скачать

1 =================================================================

Понятие информации и информатики Основные понятия информации Большинство ученых в наши дни отказываются от попыток дать строгое определение информации и считают, что информацию следует рассматривать как первичное, неопределимое понятие подобно множества в математике. Некоторые авторы учебников предлагают следующие определения информации: Информация – это знания или сведения о ком-либо или о чем-либо. Информация – это сведения, которые можно собирать, хранить, передавать, обрабатывать, использовать. Информатика – наука об информации  или – это наука о структуре и свойствах информации, способах сбора, обработки и передачи информации  или – информатика, изучает технологию сбора, хранения и переработки информации, а компьютер основной инструмент в этой технологии. Термин информация происходит от латинского слова informatio, что означает сведения, разъяснения, изложение. В настоящее время наука пытается найти общие свойства и закономерности, присущие многогранному понятию информация, но пока это понятие во многом остается интуитивным и получает различные смысловые наполнения в различных отраслях человеческой деятельности:

Информатика – область человеческой деятельности, связанная с процессами преобразования информации с помощью компьютеров и других средств вычислительной техники. С информатикой часто связывают одно из следующих понятий: это либо совокупность определенных средств преобразования информации, либо фундаментальная наука, либо отрасль производства, либо прикладная дисциплина. 

2======================================================================

количества информации

Для определения количества информации не всегда возможно использовать формулу Хартли. Её применяют, когда выбор любого элемента из множества, содержащего N элементов, равнозначен. Или, при алфавитном подходе, все символы алфавита встречаются в сообщениях, записанных с помощью этого алфавита, одинаково часто. Однако, в действительности символы алфавитов естественных языков в сообщениях появляются с разной частотой.

Пусть мы имеем алфавит, состоящий из N символов, с частотной характеристикой P1 , P2 , . . . PN , где Pi - вероятность появления i – го символа. Все вероятности неотрицательны и их сумма равна 1. Тогда средний информационный вес символа (количество информации, содержащееся в символе) такого алфавита выражается формулой Шеннона: H = P1 log2 (1/ P1) + P2 log2 (1/ P2) + . . . + PN log2 (1/ PN) где H – количество информации, N – количество возможных событий, Pi – вероятность отдельных событий

Энтропия - мера внутренней неупорядоченности информационной системы. Энтропия увеличивается при хаотическом распределении информационных ресурсов и уменьшается при их упорядочении.

Энтропия термодинамической системы определяется как натуральный логарифм от числа различных микросостояний Z, соответствующих данному макроскопическому состоянию (например, состоянию с заданной полной энергией)

Коэффициент пропорциональности k и есть постоянная Больцман

Экономное кодирование

Сведния о веороятность появления различных символов в сообщении могли бы сделать кодирование гораздо более экономным.

Рассмотрим пример:

Сообщение о том, что бутерброд упал маслом вниз несет в себе менее 1 бита информации. Но, как известно, со стола бутерброд падает маслом вниз почти всегда. И даже в том случае, если м будем бросать будерброд несколько раз, а результаты экспериментов будем записывать символами 0 и 1, то и в среднем один символ полученного двоичного кода будет нести менее одного бита информации в среднем.

 

В теории информации доказываются следующие леммы: Лемма

1. Число различных двоичных слов длины k равно 2k

  • Лемма 2. Множество N допускает однозначное двоичное кодирование с длинами кодов, не превосходящими k, в том и только в том случае, когда число элементов множества N не превосходит 2k.

  • Согласно леммам 1 и 2, длина кода при двоичном кодировании одного символа из алфавита мощности N =2k (то есть алфавита, состоящего ровно из N различных символов) равна k.

  • Это позволяет давать эффективные оценки на минимально необходимый объем памяти компьютера для запоминания различного рода данных.

  • Например, кодирование сообщений на русском языке можно осуществлять с помощью алфавита, состоящего из 32 = 25 различных символов (без буквы Ё). Тогда один символ при равномерном двоичном кодировании (одинаковой длине двоичного слова для каждого символа алфавита) будет занимать 5 бит памяти, а не 8 бит, как при ASCII-кодировании текстовой информации вообще.

  • Чтобы подсчитать объем памяти, который займет сообщение из символов такого алфавита, нужно 5 бит умножить на количество символов в сообщении.

  • Количество информации, которое вмещает один символN-элементного алфавита, определяется по формулеХартли: k = log 2 N По-другому, количество информации, полученное при выборе одного предмета из N равнозначных предметов, равно k = log2 N

3 ------------======================================================

Свойства информации

 (с точки зрения бытового подхода к определению информации):

релевантность — способность информации соответствовать нуждам (запросам) потребителя;

полнота — свойство информации исчерпывающе (для данного потребителя) характеризовать отображаемый объект или процесс;

своевременность — способность информации соответствовать нуждам потребителя в нужный момент времени;

достоверность — свойство информации не иметь скрытых ошибок. Достоверная информация со временем может стать недостоверной, если устареет и перестанет отражать истинное положение дел;

доступность — свойство информации, характеризующее возможность ее получения данным потребителем;

защищенность — свойство, характеризующее невозможность несанкционированного использования или изменения информации;

эргономичность — свойство, характеризующее удобство формы или объема информации с точки зрения данного потребителя.

С этой точки зрения можно рассмотреть такие свойства информации:

· запоминаемость;

· передаваемость;

· воспроизводимость;

· преобразуемость;

· стираемость.

Запоминаемость — одно из самых важных свойств. Запоминаемую информацию будем называть макроскопической (имея в виду пространственные масштабы запоминающей ячейки и время запоминания). Именно с макроскопической информацией мы имеем дело в реальной практике.

Передаваемость информации с помощью каналов связи (в том числе с помехами) хорошо исследована в рамках теории информации К.Шеннона. В данном случае имеется в виду несколько иной аспект — способность информации к копированию, т.е. к тому, что она может быть “запомнена” другой макроскопической системой и при этом останется тождественной самой себе. Очевидно, что количество информации не должно возрастать при копировании.

Воспроизводимость информации тесно связана с ее передаваемостью и не является ее независимым базовым свойством. Если передаваемость означает, что не следует считать существенными пространственные отношения между частями системы, между которыми передается информация, то воспроизводимость характеризует неиссякаемость и неистощимость информации, т.е. что при копировании информация остается тождественной самой себе.

Фундаментальное свойство информации — преобразуемость. Оно означает, что информация может менять способ и форму своего существования. Копируемость есть разновидность преобразования информации, при котором ее количество не меняется. В общем случае количество информации в процессах преобразования меняется, но возрастать не может.

Свойство стираемости информации также не является независимым. Оно связано с таким преобразованием информации (передачей), при котором ее количество уменьшается и становится равным нулю.

Данных свойств информации недостаточно для формирования ее меры, так как они относятся к физическому уровню информационных процессов.

4======================================================================

Информационные технологии. Структура информационного процесса. Сбор, обработка, хранение и передача информации.

Информационные процессы (сбор, обработка и передача информации) всегда играли важную роль в науке, технике и жизни общества.

Сбор информации — это деятельность субъекта, в ходе которой он получает сведения об интересующем его объекте. Сбор информации может производиться или человеком, или с помощью технических средств и систем - аппаратно. Задача сбора информации не может быть решена в отрыве от других задач, - в частности, задачи обмена информацией (передачи).

Обмен информацией — это процесс, в ходе которого источник информации ее передает, а получатель — принимает. В результате обмена информацией между источником и получателем устанавливается своеобразный “информационный баланс”, при котором в идеальном случае получатель будет располагать той же информацией, что и источник.

Обмен информации производится с помощью сигналов, являющихся ее материальным носителем. Источниками информации могут быть любые объекты реального мира, обладающие определенными свойствами и способностями. Процесс формирования исходного, несистематизированного массива информации называется накоплением информацииХранение информации - это процесс поддержания исходной информации в виде, обеспечивающем выдачу данных по запросам конечных пользователей в установленные сроки.

Обработка информации — это упорядоченный процесс ее преобразования в соответствии с алгоритмом решения задачи.

После решения задачи обработки информации результат должен быть выдан конечным пользователям в требуемом виде. Эта операция реализуется в ходе решения задачи выдачи информации. Выдача информации, как правило, производится с помощью внешних устройств ЭВМ.

5========================

=

6======================================================================

САПР — система, объединяющая технические средства, математическое и

программное обеспечение, параметры и характеристики которых выбирают с

максимальным учетом особенностей задач инженерного проектирования и

конструирования. В САПР обеспечивается удобство использования программ за

счет применения средств оперативной связи инженера с ЭВМ, специальных

проблемно-ориентированных языков и наличия информационно-справочной базы.

Структурными составными составляющими САПР являются подсистемы,

обладающие всеми свойствами систем и создаваемые как самостоятельные

системы. Это выделенные по некоторым признакам части САПР, обеспечивающие

выполнение некоторых законченных проектных задач с получением

соответствующих проектных решений и проектных документов.

По назначению подсистемы САПР разделяют на два вида: проектирующие и

обслуживающие.

К проектирующим относятся подсистемы, выполняющие проектные процедуры и

операции, например:

. подсистема компоновки машины;

. подсистема проектирования сборочных единиц;

. подсистема проектирования деталей;

. подсистема проектирования схемы управления;

. подсистема технологического проектирования.

К обслуживающим относятся подсистемы, предназначенные для поддержания

работоспособности проектирующих подсистем, например:

. подсистема графического отображения объектов проектирования;

. подсистема документирования;

. подсистема информационного поиска и др.

В зависимости от отношения к объекту проектирования различают два вида

проектирующих подсистем:

. объектно-ориентированные (объектные);

. объектно-независимые (инвариантные).

К объектным подсистемам относят подсистемы, выполняющие одну или

несколько проектных процедур или операций, непосредственно зависимых от

конкретного объекта проектирования, например:

. подсистема проектирования технологических систем;

. подсистема моделирования динамики, проектируемой конструкции и др.

К инвариантным подсистемам относят подсистемы, выполняющие

унифицированные проектные процедуры и операции, например:

. подсистема расчетов деталей машин;

. подсистема расчетов режимов резания;

. подсистема расчета технико-экономических показателей и др.

Процесс проектирования реализуется в подсистемах в виде определенной

последовательности проектных процедур и операций. Проектная процедура

соответствует части проектной подсистемы, в результате выполнения которой

принимается некоторое проектное решение. Она состоит из элементарных

проектных операции, имеет твердо установленный порядок их выполнения и

направлена на достижение локальной цели в процессе проектирования. Под

проектной операцией понимают условно Выделенную часть проектной процедуры

или элементарное действие, совершаемое конструктором в процессе

проектирования. Примерами проектных процедур могут служить процедуры

разработки кинематической или компоновочной схемы станка, технологии

обработки изделий и т. п., а примерами проектных операций — расчет

припусков, решение какого-либо уравнения и т. п.

Определение асни

Автоматизированная система научных исследований и комплексных испытаний образцов новой техники (АСНИ) - это программно-аппаратный комплекс на базе средств вычислительной техники, предназначенный для проведения научных исследований или комплексных испытаний образцов новой техники на основе получения и использования моделей исследуемых объектов, явлений и процессов.

Программно-аппаратный комплекс АСНИ состоит из средств методического, программного, технического, информационного и организационно-правового обеспечения.

Взаимодействие исследуемого объекта, явления или процесса с АСНИ осуществляется через аппаратуру сопряжения, входящую в состав программно-аппаратного комплекса.

Взаимодействие подразделений научно-исследовательской организации или предприятия с АСНИ регламентируется средствами организационно-правового обеспечения системы.

Функции асни

Основная функция АСНИ состоит в получении результатов научных исследований (комплексных испытаний) путем автоматизированной обработки экспериментальных данных и другой информации, получения и исследования моделей объектов, явлений и процессов на основе применения математических методов, автоматизированных процедур, планирования и управления экспериментом.

Автоматизированные процедуры в АСНИ состоят в том, что исследования (испытания) объектов, явлений и процессов, получение и исследование математических моделей осуществляется путем взаимодействия пользователя с АСНИ в режиме диалога.

В АСНИ могут осуществляться автоматические процедуры, при которых обработка данных, идентификация или построение математических моделей производятся без участия человека.

В АСНИ могут применяться также процедуры планирования и управления экспериментом, при которых использование моделирования корректирует условия эксперимента, а экспериментальная информация используется для выбора математической модели из некоторого заданного множества таких моделей.

Результатом функционирования АСНИ является подтверждение (отклонение) гипотез или совокупность законченных математических моделей, удовлетворяющая заданным требованиям, а также обработанные результаты исследований, наблюдений и измерений.

Функционирование АСНИ должно обеспечивать получение выходных документов, выполненных в заданной форме и содержащих результаты научных исследований или испытаний, а также рекомендации по использованию этих результатов для прогнозирования, управления или проектирования.

Структура асни

Основными структурными звеньями АСНИ являются подсистемы.

Подсистемой АСНИ называется выделенная по некоторым признакам часть АСНИ, обеспечивающая выполнение определенных автоматизированных процедур исследований (испытаний) и получение соответствующих выходных документов.

Различаются объектно-ориентированные (объектные) и обслуживающие подсистемы АСНИ.

Объектная подсистема осуществляет получение и обработку экспериментальных данных с некоторого объекта.

Объектными могут быть, например, подсистемы:

  • - обработки экспериментальных данных, получаемых со специализированных установок (ускорителей, спектрометров, испытательных стендов);

  • - обработки данных на морских судах, системы для сейсморазведки и т.п.;

  • - коллективного пользования для куста однородных экспериментальных установок или стендов.

Обслуживающая подсистема осуществляет функции управления и обработки информации, не зависящие от особенностей исследуемого явления, объекта или процесса.

Обслуживающими могут быть, например, подсистемы:

  • - управления АСНИ;

  • - диалоговых процедур;

  • - численного анализа;

  • - планирования и оптимизации эксперимента;

  • - ввода, обработки и вывода графической информации;

  • - информационно-поисковых процедур.

Подсистема АСНИ состоит из компонентов, объединенных общей для данной подсистемы процедурой.

Компонентом называется элемент средств обеспечения, выполняющий определенную функцию в подсистеме АСНИ.

Структурное единство подсистемы АСНИ обеспечивается связями между компонентами различных средств обеспечения, образующими подсистему.

Структурное объединение подсистем АСНИ в систему обеспечивается связями между компонентами, входящими в подсистемы.

Средства обеспечения АСНИ состоят из компонентов:

  • - методического обеспечения;

  • - программного обеспечения;

  • - технического обеспечения;

  • - информационного обеспечения;

  • - организационно-правового обеспечения.

7-------==================================================================

экспертные системы

Как правило, экспертные системы создаются для решения практических задач в некоторых узкоспециализированных областях, где большую роль играют знания «бывалых» специалистов. Экспертные системы были первыми разработками, которые смогли привлечь большое внимание к результатам исследований в области искусственного интеллекта.

Экспертные системы имеют одно большое отличие от других систем искусственного интеллекта: они не предназначены для решения каких-то универсальных задач, как например нейронные сети или генетические алгоритмы. Экспертные системы предназначены для качественного решения задач в определенной разработчиками области, в редких случаях – областях.

Экспертное знание – это сочетание теоретического понимания проблемы и практических навыков ее решения, эффективность которых доказана в результате практической деятельности экспертов в данной области. Фундаментом экспертной системы любого типа является база знаний, которая составляется на основе экспертных знаний специалистов. Правильно выбранный эксперт и удачная формализация его знаний позволяет наделить экспертную систему уникальными и ценными знаниями. Врач, к примеру, хорошо диагностирует болезни и эффективно назначает лечение, не потому, что он обладает некими врожденными способностями, а потому что имеет качественное медицинское образование и большой опыт в лечении своих пациентов. Поэтому ценность всей экспертной системы как законченного продукта на 90% определяется качеством созданной базы знаний.