Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
учебник-пособие по СС УВМ с О.doc
Скачиваний:
39
Добавлен:
20.12.2018
Размер:
23.02 Mб
Скачать

Элементы теории интерполяции, экстраполяции и сглаживания

В интерполяционных алгоритмах вначале накапливается не менее N+2 отсчетов, а затем по N+1 и обязательно включая крайние отсчеты, вычисляются коэффициенты интерполирующего полинома степени N и проверяется погрешность интерполяции этим полиномом оставшихся внутри интервала отсчетов, не использованных при построении полинома. При поступлении каждого очередного отчета вычисляется новый интерполирующий полином фиксированной степени N , проходящий через 2 крайних и (N-1) внутренних отсчетов нового интервала и проверяется погрешность интерполяции этим полиномом остальных внутренних отсчетов этого интервала. Итак, интерполяция- передача узловых значений с последующим восстановлением информации с помощью полиномов. В чистом виде не всегда обеспечивает достаточно высокую точность восстановления информации по ее сжатым отрезкам.

В экстраполяционных алгоритмах по первым N+1 отсчетам вычисляются коэффициенты интерполяционного полинома Лагранжа степени N и затем осуществляется последовательная экстраполяция полинома на каждый очередной отсчет. Для этого при найденных коэффициентах вычисляется значение полинома на момент поступления очередного ожидаемого отсчета, а разность между вычисленным и фактическим значениями сравнивается с допустимой максимальной погрешностью (апертурой). Восстановление измеренного значения на проемной стороне происходит в реальном масштабе времени без задержки, что часто является определяющим преимуществом этих алгоритмов. Экстраполяция позволяет улучшить динамические характеристики информационных систем.

Сглаживание дает возможность сократить объем передаваемой информации за счет избавления от высокочастотных помех.

Апертурные алгоритмы на базе полиномиальной интерполяции

Полиномиальная интерполяция нулевого порядка (ПИНП) для представления максимально возможного числа последовательных выборок при заданном значении горизонтальной апертуры x, ширина которой равна удвоенному значению допустимой погрешности Е, использует ступенчатую функцию. При ПИНП максимизируется время, в течение которого сигнал x(t) пребывает внутри выбранной апертуры. Это достигается за счет того, что в момент выхода сигнала за границы апертуры, последняя перемещается по вертикали таким образом, чтобы отсчеты оставались внутри ее границ возможно большее время. Практически определение нового положения оси апертуры, соответствующей значению передаваемой выборки, выполняется путем вычисления среднего арифметического двух фактических выборок, полученных на обеих границах интервала.

Полиномиальная интерполяция первого порядка (ПИПП) обеспечивает аппроксимацию считываемых данных кривой, описываемой полиномом первого порядка. Существует несколько разновидностей ПИПП. Оптимальным вариантом ПИПП является интерполяция с четырьмя степенями свободы ПИПП-4, когда произвольно задается начальная и конечная точки прямой, проходящей так, чтобы охватить максимально возможное число выборок, располагающихся внутри апертуры. Другими словами вычисление координат начала и конца отрезка аппроксимирующей прямой осуществляется так, чтобы длина этого отрезка была максимальной при заданном значении допустимой погрешности . Отдельные отрезки при использовании этого метода ПИПП соединяются друг с другом так же отрезками прямых.

Метод ПИПП-4 обеспечивает максимально возможное сжатие, однако реализация его на практике довольно сложна. Поэтому часто применяют другие методы ПИПП: с использованием стыкующихся отрезков, с использованием нестыкующихся отрезков. В методе ПИПП с использованием стыкующихся отрезков (ПИПП-СО) начальная точка нового отрезка аппроксимирующей прямой совмещается с конечной точкой предыдущего отрезка, причем один из концов отрезка располагается на фактической выборке, а другой — на границе апертуры. Здесь на каждом интервале аппроксимации передается информация только об одной конечной точке отрезка аппроксимации, что, казалось бы, должно повысить эффективность кодирования по сравнению с ПИПП-4. Но это не так, потому что количество отрезков аппроксимации в ПИПП-СО может почти вдвое превышать таковое в ПИПП-4. Кроме того, в ПИПП-СО значения восстанавливаемых сигналов, как правило, дальше отстоят от реальных значений, что приводит к повышению числа выборок для увеличения точности восстановления информации.

Для компенсации недостатков ПИПП-СО был разработан метод ПИПП с использованием нестыкующихся отрезков (ПИПП-НСО). Начальные точки аппроксимирующих отрезков прямой в методе ПИПП-НСО всегда совмещаются с фактическими выборками, соответствующими моменту, когда предыдущий аппроксимирующий отрезок прямой выходит за пределы апертуры. Такой прием позволяет минимизировать значение изменения угла наклона смежных отрезков аппроксимации, т.е. уменьшить колебательный характер аппроксимирующей функции. Метод ПИПП-НСО обеспечивает высокий коэффициент уплотнения информации, несмотря на то, что приходится передавать информацию об обоих концах каждого отрезка аппроксимации. Объясняется это уменьшением общего числа выборок за счет более точного метода разбиения на отрезки аппроксимации.

Еще одной разновидностью ПИПП является так называемая веерная интерполяция. Здесь начала и концы каждого из отрезков аппроксимаци совпадают с фактическими выборками, а сам отрезок располагается так, чтобы охватить максимально возможное количество точек отсчета, попадающих внутрь апертуры. При веерной интерполяции осуществляется весьма заметное сглаживание сигнала, поэтому ее рационально рекомендовать в тех случаях, когда на сигнал наложена высокочастотная помеха.