Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
12 Дисперсные системы.doc
Скачиваний:
12
Добавлен:
18.12.2018
Размер:
121.34 Кб
Скачать

12.6 Электрические свойства коллоидных растворов

В 1909 г. проф. Московского университета Ф.Рейсе наблюдал воздействие постоянного электрического тока на диспергированную в воде глину и на этом основании описал электрические свойства коллоидных растворов. Частицы дисперсной фазы (глины) перемещались к аноду, где вследствие их большого скопления наблюдалось помутнение раство­ра. Частицы же дисперсионной среды (воды) перемещались к катоду, где наблюдалось повышение уровня прозрачной жидкости. Направленное движение частиц к электродам говорило об их заряде, причем стало ясным, что дисперсная фаза несет на себе заряд, проти­воположный по знаку заряду среды. Движение частиц дисперсной фазы к одному из электродов при пропускании через золь постоян­ного электрического тока получило название электрофореза, а движение частиц дисперсионной среды -электроосмос.

Итак, электрофорез и электроосмос обусловлены наличием раз­ноименного заряда у частиц дисперсной фазы и дисперсионной сре­ды. На границе раздела фаз возникает двойной электрический слой, состоящий из тонкой (адсорбционной) части и протяжен­ной диффузной части. Между фазами возникает разность потенциа­лов, называемая электротермодинамическим потенциа­лом. Часть скачка потенциала, обусловленная диффузным слоем, называется электрокинетическим или L, (дзета)-потенциалом (рис. 8.9). Электрокинетический потенциал определяется толщиной и зарядом диффузного слоя, которые зависят от концентрации и заряда противоионов и температуры. Его значение можно регулировать, на­пример, введением противоионов с высоким значением зарядов.

12.7 Кинетическая и агрегативная устойчивость коллоидных сис­тем

Кинетические свойства коллоидных растворов определяют их кинетическую устойчивость, которая состоит в том, что концентра­ция коллоидных растворов одинакова по всему объему системы и при правильном хранении не изменяется во времени.

Электрические свойства коллоидных растворов объясняют их агрегативную устойчивость, которая проявляется в том, что частицы дисперсной фазы в коллоидном растворе не укрупняются, не слипа­ются. Сохранение коллоидной степени дисперсности во времени обу­словлено прежде всего наличием одноименного электрического за­ряда частиц дисперсной фазы, вызывающего их взаимное отталкива­ние. С увеличением электрокинетического потенциала растет устой­чивость коллоидных систем.

Наличие электрического заряда у частиц дисперсной фазы приво­дит к их значительной гидратации (полярные молекулы воды опреде­ленным образом ориентируются относительно заряженных частиц и вступают с ними во взаимодействие). Гидратная оболочка заметно снижает поверхностную энергию дисперсной фазы и тем самым уменьшает стремление частиц к укрупнению. Гидратная оболочка приводит также к разобщению частиц в коллоидном растворе, что повышает агрегативную устойчивость, а иногда даже обеспечивает сохранение коллоидной степени дисперсности.

Частицы дисперсной фазы некоторых веществ, склонных к обра­зованию золей, проявляют большое сродство к молекулам среды, адсорбируя их в первую очередь. Ядро коллоидной частицы таких золей имеет собственную гидратную оболочку. Формула мицеллы золя:

Такие коллоидные растворы называют гидрофильными. Гидрофильные коллоидные растворы приближаются по свойствам к истинным растворам. Это, как правило, золи органического происхо­ждения. Коллоидные растворы большинства неорганических веществ имеют гидрофобный характер* .

Агрегативная устойчивость гидрофильных золей особенно вели­ка, так как при наличии защитного действия одноименного заряда коллоидных частиц и общей гидратной оболочки ядра добавляется еще защитное действие гидратной оболочки ядра /Н2О.

Гели и твердые коллоиды.

При длительном хранении гидро­фильные золи переходят в особое "студнеобразное" коллоидное со­стояние. В таком виде их называют гелями. Структура геля такова, что мицеллы не разрушаются, а просто связываются друг с другом, образуя своеобразные ячейки, внутри которых сохраняется среда Н20. Гель можно высушить, превратив его в твердый коллоид (рис. 8.10).

Примером гидрофильного золя может служить золь желатина. В продаже имеется твердый коллоид желатина. При набухании в воде образуется гель. При нагревании геля («студня») образуется золь. Все процессы обратимы: