- •Математические методы системного анализа и теория принятия решений Методическое пособие
- •1. Теория принятия решений 4
- •2. Линейное программирование 9
- •3. Нелинейное программирование 42
- •4. Игровые методы обоснования решений 51
- •5. Задачи распознавания образов 62
- •Предисловие
- •1. Теория принятия решений
- •1.1. Задачи, связанные с принятием решений Проблема оптимальности.
- •Основные понятия и принципы исследования операций.
- •Примеры задач исследования операций.
- •1.2. Математические модели операций Искусство моделирования.
- •1.3. Разновидности задач исследования операций и подходов к их решению Прямые и обратные задачи исследования операций.
- •Пример выбора решения при определенности: линейное программирование.
- •Проблема выбора решений в условиях неопределенности.
- •Выбор решения по многим критериям.
- •«Системный подход».
- •2. Линейное программирование
- •2.1. Краткое представление о математическом программировании Предмет математического программирования.
- •Краткая классификация методов математического программирования.
- •2.2. Примеры экономических задач линейного программирования Понятие линейного программирования.
- •Задача о наилучшем использовании ресурсов.
- •Задача о выборе оптимальных технологий.
- •Задача о смесях.
- •Задача о раскрое материалов.
- •Транспортная задача.
- •2.3. Линейные векторные пространства Основные понятия линейного векторного пространства.
- •Решение систем линейных уравнений методом Гаусса.
- •Реализация метода исключения неизвестных в среде Excel.
- •Различные схемы реализации метода Гаусса.
- •Опорные решения системы линейных уравнений.
- •2.4. Формы записи задачи линейного программирования Основные виды записи злп.
- •Каноническая форма представления задачи линейного программирования.
- •Переход к канонической форме.
- •2.5. Геометрическая интерпретация задачи линейного программирования Определение выпуклой области.
- •Геометрическая интерпретация.
- •2.6. Свойства решений задачи линейного программирования Свойства основной задачи линейного программирования.
- •Графический метод решения задачи линейного программирования.
- •2.7. Симплексный метод Идея симплекс-метода.
- •Теоретические обоснования симплекс-метода.
- •Переход к нехудшему опорному плану.
- •Зацикливание.
- •Алгоритм симплекс-метода.
- •2.8. Двойственность в линейном программировании Прямая и двойственная задача.
- •Связь между решениями прямой и двойственной задач.
- •Геометрическая интерпретация двойственных задач.
- •2.9. Метод искусственного базиса Идея и реализация метода искусственного базиса.
- •3. Нелинейное программирование
- •3.1. Общая задача нелинейного программирования Постановка задачи.
- •Примеры задач нелинейного программирования (экономические).
- •Геометрическая интерпретация задачи нелинейного программирования.
- •3.2. Выпуклое программирование Постановка задачи выпуклого программирования.
- •3.3. Классические методы оптимизации Метод прямого перебора.
- •Классический метод дифференциальных исчислений.
- •3.4. Метод множителей лагранжа
- •3.5. Градиентные методы решения задач нелинейного программирования Общая идея методов.
- •Метод Франка-Вулфа.
- •Метод штрафных функций.
- •4. Игровые методы обоснования решений
- •4.1. Предмет и задачи теории игр Основные понятия.
- •Классификация выборов решений.
- •Антагонистические матричные игры.
- •Чистые и смешанные стратегии и их свойства.
- •4.2. Методы решения конечных игр Упрощение матричной игры.
- •Решение матричной игры размерностью 22.
- •Графическое решение матричной игры.
- •Сведение задач теории игр к задачам линейного программирования.
- •4.3. Задачи теории статистических решений Игры с природой.
- •Критерии принятия решений.
- •5. Задачи распознавания образов
- •5.1. Общая постановка задачи распознавания образов и их классификация Проблема распознавания.
- •Обсуждение задачи опознавания.
- •Язык распознавания образов.
- •Априорные предположения — это записанные специальным образом, накопленные знания специалистов.
- •Общая постановка задачи.
- •Геометрическая интерпретация задачи распознавания.
- •Классификация задач распознавания.
- •5.2. Подготовка и анализ исходных данных Общая схема решения задачи.
- •Общая схема постановки и решения задачи Анализ данных с целью выбора постановки и метода решения
- •5.3. Методы опознавания образов Основные этапы процесса опознавания образов.
- •Методы создания системы признаков.
- •Признаковое пространство.
- •Сокращение размерности исходного описания.
- •Методы построения решающего правила.
- •5.4. Меры и метрики Понятие о сходстве.
- •Меры сходства и метрики.
- •Примеры функций мер сходства.
- •5.5. Детерминированно-статистический подход к познаванию образов Основные этапы детерминированно-статистического подхода.
- •Получение исходного описания.
- •Создание системы признаков.
- •Сокращение размерности исходного описания.
- •Нахождение решающего правила (метод эталонов).
- •Коррекция решающего правила.
- •5.6. Детерминированный метод построения решающего правила (метод эталонов) Идея метода эталонов.
- •Минимизация числа эталонов.
- •Габаритные эталоны.
- •Применение метода эталонов к частично пересекающимся образам.
- •Дополнительная минимизация числа признаков.
- •Квадратичный дискриминантный анализ.
- •Распознавание с отказами.
- •5.8. Алгоритм голотип-1 Назначение
- •Постановка задачи
- •Метод решения задачи.
- •Условия применимости.
- •Условия применимости.
- •5.10. Алгоритм направление опробования Назначение
- •Постановка задачи.
- •Метод решения задачи.
- •Условия применимости.
- •Транспортная задача Математическая постановка.
- •Постановка задачи.
- •Теоретическое введение.
- •Методы нахождения опорного плана транспортной задачи.
- •Определение оптимального плана транспортной задачи.
- •Заключение.
- •Целочисленное программирование Постановки задач, приводящие к требованию целочисленности.
- •Постановка задачи.
- •Методы отсечения.
- •Алгоритм Гомори.
- •Первый алгоритм р. Гомори решения полностью целочисленных задач.
- •Приближенные методы.
- •Заключение.
- •Параметрическое программирование Введение.
- •Формулировка задачи.
- •Теоретическая часть.
- •Общая постановка задачи.
- •Решение задачи.
- •Геометрическая интерпретация задачи.
- •Общая постановка задачи.
- •Решение задачи.
- •Геометрическая интерпретация задачи
- •Постановка задачи.
- •Решение.
- •Геометрическое решение.
- •Решение задачи симплекс-методом.
- •Результат.
- •Некооперативные игры n лиц с ненулевой суммой Введение.
- •Теоретическая часть.
- •Постановка и решение задачи.
- •Заключение.
- •Cписок литературы
2.8. Двойственность в линейном программировании Прямая и двойственная задача.
Каждой ЗЛП можно определенным образом сопоставить некоторую другую задачу (линейного программирования), называемую двойственной или сопряженной по отношению к исходной или прямой. Дадим определение двлйственной задачи по отношению к общей ЗЛП, состоящей в нахождении максимального значения функции
Z=C1x1+C2x2+...+Cnxn (2.67)
при условиях
, (2.68)
xj0 (2.69)
О п р е д е л е н и е 1. Задача, состоящая в нахождении минимального значения функции
Z*=b1y1+b2y2+...+bnyn (2.70)
при условиях
(2.71)
yi 0 (2.72)
называется двойственной по отношению к задаче (2.67)—(2.69).
Задачи (2.67)—(2.69) и (2.70)—(2.72) образуют пару задач, называемую двойственной парой.
Двойственная задача по отношению к исходной составляется согласно следующим правилам:
1. Целевая функция исходной задачи (2.67)—(2.69) задается на максимум, а целевая функция двойственной (2.70)—(2.72) — на минимум.
2. Матрица
,
составленная из коэффициентов при неизвестных в системе ограничений (2.68) исходной задачи, и аналогичная матрица
в двойственной задаче получаются друг из друга транспонированием.
3. Число переменных в двойственной задаче равно числу соотношений в системе (2.70) исходной задачи, а число ограничений в системе (2.71) двойственной задачи— числу переменных в исходной задаче.
4. Коэффициентами при неизвестных в целевой функции (2.70) двойственной задачи являются свободные члены в системе (2.68) исходной задачи, а правыми частями в соотношениях системы (2.71) двойственной задачи — коэффициенты при неизвестных в целевой функции (2.67) исходной задачи.
5. Если переменная хj исходной задачи может принимать только лишь положительные значения, то j-е условие в системе (2.71) двойственной задачи является неравенством вида «». Если же переменная хj может принимать как положительные, так и отрицательные значения, то j -е соотношение в системе (2.71) представляет собой уравнение. Аналогичные связи имеют место между ограничениями (2.68) исходной задачи и переменными двойственной задачи. Если i-е соотношение в системе (2.68) исходной задачи является неравенством, то i-я переменная двойственной задачи yi 0. В противоположном случае переменная yi может принимать как положительные, так и отрицательные значения.
Связь между решениями прямой и двойственной задач.
Рассмотрим пару двойственных задач, образованную основной задачей линейного программирования и двойственной к ней.
Исходная задача: найти максимум функции
(2.73)
при условиях
(2.74)
. (2.75)
Двойственная задача: найти минимум функции
(2.76)
при условиях
(2.77)
Каждая из задач двойственной пары (2.73)—(2.75) и (2.76),(2.77) фактически является самостоятельной задачей линейного программирования и может быть решена независимо одна от другой. Однако при определении симплексным методом оптимального плана одной из задач тем самым находится решение и другой задачи.
Существующие зависимости между решениями прямой и двойственной задач характеризуются сформулированными ниже леммами и теоремами двойственности.
Л е м м а 1. Если Х — некоторый план исходной задачи (2.73)—(2.75), а Y— произвольный план двойственной задачи (2.76),(2.77), то значение целевой функции исходной задачи при плане Х всегда не превосходит значения целевой функции двойственной задачиприплане Y, т.е. Z(X)Z*(Y).
Л е м м а 2. Если Z(X*)=Z*(Y*)для некоторых планов X* и Y* задач (2.73)—(2.75) и (2.76),(2.77), то Х* — оптимальный план исходной задачи, а Y* — оптимальный план двойственной задачи.
Т е о р е м а 1. (первая теорема двойственности). Если одна из пары двойственных задач (2.73)—(2.75) или (2.76),(2.77) имеет оптимальный план, то и другая имеет оптимальный план и значения целевых функций задач при их оптимальных планах равны между собой т.е. Zmax=Z*min..
Если же целевая функция одной из пары двойственных задач не ограничена [для исходной сверху, для двойственной снизу], то другая задача вообще не имеет планов.
Т е о р е м а 2. (вторая теорема двойственности). План Х*=(х*1, х*2, ..., х*n) задачи (2.73)—(2.75) и план Y*=(y*1,y*2,...,y*m) задачи (2.76),(2.77) являются оптимальными планами этих задач тогда и только тогда, когда для любого j выполняется равенство
.