- •Математические методы системного анализа и теория принятия решений Методическое пособие
- •1. Теория принятия решений 4
- •2. Линейное программирование 9
- •3. Нелинейное программирование 42
- •4. Игровые методы обоснования решений 51
- •5. Задачи распознавания образов 62
- •Предисловие
- •1. Теория принятия решений
- •1.1. Задачи, связанные с принятием решений Проблема оптимальности.
- •Основные понятия и принципы исследования операций.
- •Примеры задач исследования операций.
- •1.2. Математические модели операций Искусство моделирования.
- •1.3. Разновидности задач исследования операций и подходов к их решению Прямые и обратные задачи исследования операций.
- •Пример выбора решения при определенности: линейное программирование.
- •Проблема выбора решений в условиях неопределенности.
- •Выбор решения по многим критериям.
- •«Системный подход».
- •2. Линейное программирование
- •2.1. Краткое представление о математическом программировании Предмет математического программирования.
- •Краткая классификация методов математического программирования.
- •2.2. Примеры экономических задач линейного программирования Понятие линейного программирования.
- •Задача о наилучшем использовании ресурсов.
- •Задача о выборе оптимальных технологий.
- •Задача о смесях.
- •Задача о раскрое материалов.
- •Транспортная задача.
- •2.3. Линейные векторные пространства Основные понятия линейного векторного пространства.
- •Решение систем линейных уравнений методом Гаусса.
- •Реализация метода исключения неизвестных в среде Excel.
- •Различные схемы реализации метода Гаусса.
- •Опорные решения системы линейных уравнений.
- •2.4. Формы записи задачи линейного программирования Основные виды записи злп.
- •Каноническая форма представления задачи линейного программирования.
- •Переход к канонической форме.
- •2.5. Геометрическая интерпретация задачи линейного программирования Определение выпуклой области.
- •Геометрическая интерпретация.
- •2.6. Свойства решений задачи линейного программирования Свойства основной задачи линейного программирования.
- •Графический метод решения задачи линейного программирования.
- •2.7. Симплексный метод Идея симплекс-метода.
- •Теоретические обоснования симплекс-метода.
- •Переход к нехудшему опорному плану.
- •Зацикливание.
- •Алгоритм симплекс-метода.
- •2.8. Двойственность в линейном программировании Прямая и двойственная задача.
- •Связь между решениями прямой и двойственной задач.
- •Геометрическая интерпретация двойственных задач.
- •2.9. Метод искусственного базиса Идея и реализация метода искусственного базиса.
- •3. Нелинейное программирование
- •3.1. Общая задача нелинейного программирования Постановка задачи.
- •Примеры задач нелинейного программирования (экономические).
- •Геометрическая интерпретация задачи нелинейного программирования.
- •3.2. Выпуклое программирование Постановка задачи выпуклого программирования.
- •3.3. Классические методы оптимизации Метод прямого перебора.
- •Классический метод дифференциальных исчислений.
- •3.4. Метод множителей лагранжа
- •3.5. Градиентные методы решения задач нелинейного программирования Общая идея методов.
- •Метод Франка-Вулфа.
- •Метод штрафных функций.
- •4. Игровые методы обоснования решений
- •4.1. Предмет и задачи теории игр Основные понятия.
- •Классификация выборов решений.
- •Антагонистические матричные игры.
- •Чистые и смешанные стратегии и их свойства.
- •4.2. Методы решения конечных игр Упрощение матричной игры.
- •Решение матричной игры размерностью 22.
- •Графическое решение матричной игры.
- •Сведение задач теории игр к задачам линейного программирования.
- •4.3. Задачи теории статистических решений Игры с природой.
- •Критерии принятия решений.
- •5. Задачи распознавания образов
- •5.1. Общая постановка задачи распознавания образов и их классификация Проблема распознавания.
- •Обсуждение задачи опознавания.
- •Язык распознавания образов.
- •Априорные предположения — это записанные специальным образом, накопленные знания специалистов.
- •Общая постановка задачи.
- •Геометрическая интерпретация задачи распознавания.
- •Классификация задач распознавания.
- •5.2. Подготовка и анализ исходных данных Общая схема решения задачи.
- •Общая схема постановки и решения задачи Анализ данных с целью выбора постановки и метода решения
- •5.3. Методы опознавания образов Основные этапы процесса опознавания образов.
- •Методы создания системы признаков.
- •Признаковое пространство.
- •Сокращение размерности исходного описания.
- •Методы построения решающего правила.
- •5.4. Меры и метрики Понятие о сходстве.
- •Меры сходства и метрики.
- •Примеры функций мер сходства.
- •5.5. Детерминированно-статистический подход к познаванию образов Основные этапы детерминированно-статистического подхода.
- •Получение исходного описания.
- •Создание системы признаков.
- •Сокращение размерности исходного описания.
- •Нахождение решающего правила (метод эталонов).
- •Коррекция решающего правила.
- •5.6. Детерминированный метод построения решающего правила (метод эталонов) Идея метода эталонов.
- •Минимизация числа эталонов.
- •Габаритные эталоны.
- •Применение метода эталонов к частично пересекающимся образам.
- •Дополнительная минимизация числа признаков.
- •Квадратичный дискриминантный анализ.
- •Распознавание с отказами.
- •5.8. Алгоритм голотип-1 Назначение
- •Постановка задачи
- •Метод решения задачи.
- •Условия применимости.
- •Условия применимости.
- •5.10. Алгоритм направление опробования Назначение
- •Постановка задачи.
- •Метод решения задачи.
- •Условия применимости.
- •Транспортная задача Математическая постановка.
- •Постановка задачи.
- •Теоретическое введение.
- •Методы нахождения опорного плана транспортной задачи.
- •Определение оптимального плана транспортной задачи.
- •Заключение.
- •Целочисленное программирование Постановки задач, приводящие к требованию целочисленности.
- •Постановка задачи.
- •Методы отсечения.
- •Алгоритм Гомори.
- •Первый алгоритм р. Гомори решения полностью целочисленных задач.
- •Приближенные методы.
- •Заключение.
- •Параметрическое программирование Введение.
- •Формулировка задачи.
- •Теоретическая часть.
- •Общая постановка задачи.
- •Решение задачи.
- •Геометрическая интерпретация задачи.
- •Общая постановка задачи.
- •Решение задачи.
- •Геометрическая интерпретация задачи
- •Постановка задачи.
- •Решение.
- •Геометрическое решение.
- •Решение задачи симплекс-методом.
- •Результат.
- •Некооперативные игры n лиц с ненулевой суммой Введение.
- •Теоретическая часть.
- •Постановка и решение задачи.
- •Заключение.
- •Cписок литературы
Геометрическая интерпретация.
Геометрическая интерпретация задач дает возможность наглядно представить их структуру, выявить особенности и открывает пути исследования более сложных свойств.
Пусть дана задача
(min) Z=C1x1+ C2x2 (2.49)
(2.50)
õ10, õ20. (2.51)
Совокупность чисел õ1, õ2,...,õn, удовлетворяющих ограничениям называется решением. Если система неравенств (2.50) при условии (2.51) имеет хотя бы одно решение, она называется совместной, в противном случае несовместной. Дадим геометрическую интерпетацию элементов этой задачи. Каждое из ограничений задает на плоскости õ1Îõ2 некоторую полуплоскость с граничной прямой ài1x1+ài2x2=bi (i=1,2,...,m). Полуплоскость — выпуклое множество. Но по лемме 1. пересечение любого числа выпуклых множеств является выпуклым множеством. Отсюда следует, что область допустимых решений задачи (2.49)—(2.51) есть выпуклое множество.
Условия неотрицательности определяют полуплоскости соответственно с граничными прямыми õ1=0, õ2=0. Система совместна, поэтому полуплоскости, как выпуклые множества, пересекаясь, образуют общую часть, которая является выпуклым множеством и представляет собой совокупность точек, координаты каждой из которых являются решением данной системы. Совокупность этих точек (решений) назовем многоугольником решений. Он может быть точкой, отрезком, лучом, многоугольником, неограниченной многоугольной областью.
Таким образом, геометрическая задача линейного программирования представляет собой отыскание такой точки многогранника рещений, координаты которой доставляют линейной функции минимальное значение, причем допустимыми решениями служат все точки многогранника решений.
Перейдем к геометрической интерпретации целевой функции. Пусть область допустимых решений ЗЛП — непустое множество. Например многоугольник À1À2À3À4À5À6 (рис. 2.4). Выберем произвольное значение целевой функции Z=Z0. Получим C1x1+ C2x2 =Z0. Это уравнение прямой линии. В точках прямой NM целевая фунцция сохраняет одно и то жэе постоянное значение Z0. Считая в равенстве (2.49) Z параметром, получим уравнение семейства параллельных прямых, называемых линиями уровня целевой функции (линиями постоянного значения).
2.6. Свойства решений задачи линейного программирования Свойства основной задачи линейного программирования.
Свойства основной задачи линейного программирования тесным образом связаны со свойствами выпуклых множеств.
Доказательство. Необходимо доказать, что если Х1 и Х2 — планы задачи линейного программирования, то их выпуклая линейная комбинация Х=1Х1+2Х2, 1 0, 2 0, 1+2=1 также план задачи.
Так как Х1 и Х2 — планы задачи, то выполняются соотношения
АХ1=А0, Х1 0, АХ2=А0, Х2 0.
Перемножая
АХ= A(1Х1 +2Х2)= 1АХ1+ 2АХ2 =1А0+ 2А0=(1+2)А0= А0,
получаем, что Х удовлетворяет системе (2.43).
(2.52)
xi 0 (i=1,2,..., n) (2.53)
Но так как Х1 0; Х2 0, 1 0, 2 0, то и Х 0, т. е. удовлетворяет и условию (2.53). Таким образом Х — план задачи линейного программирования.
Т е о р е м а 2. Линейная функция задачи линейного программирования достигает своего минимального значения в угловой точке многогранника рещений. Если линейная функция принимает минимальное значение более чем в одной угловой точке, то она достигает того же значения в любой точке, являющейся выпуклой линейной комбинацией этих точек.
Доказательство. Предположим, что многогранник решений ограниченный, имеющий конечное число угловых точек. Обозначим его через К. В двумерном пространстве К имеет вид многоугольника, изображенного на рис. 2.5. Обозначим угловые точки К через Х1, Х2, ... , Хp, а оптимальный план — через Х0. Тогда Z(X0) Z(X) для всех Х из К. Если Х0 — угловая точка, то первая часть теоремы доказана. Предположим, что Х0 не является угловой точкой; тогда Х0 на основании теоремы 1 можно представить как выпуклую линейную комбинацию угловых точек К, т. е.
Так как Z(X) — линейная функция, получаем
Z(X)=Z(1Х1+2Х2+ ... +pХp) = 1Z(X1) +
+2Z(X2) + ... +pZ(Xp). (2.54)
В этом разложении среди значений Z(Xi) (i=1,2,..., p) выберем наименьшее пусть оно соответствует угловой точке Хk (1 k p) и обозначим его через m, т. е. Z(Xk)=m. Заменим в (2.54) каждое значение Z(Xi) этим наименьшим значением. Тогда, так как i 0 , , то
Z(X0) 1m + 2m + ... +pm = m.
По предположению, Х0 — оптимальный план, поэтому, с одной стороны, Z(X0) m, но с другой стороны, доказано, что Z(X0) m, значит, Z(X0)=m=Z(Xk), где Xk — угловая точка. Итак, существует угловая точка Xk, в которой линейная функция принимает минимальное значение.
Для доказательства второй части теоремы допустим, что Z(X) принимает минимальное значение более чем в одной угловой точке, например в точках Х1, Х2, ... , Хq , 1< q p; тогда Z(X1)=Z(X2)= ... =Z(Xq)= m. Если Х — выпуклая линейная комбинация этих угловых точек:
Х=1Х1+2Х2+ ... +qХq , i 0 (i= 1,2,..., q), ,
то
Z(X)=Z(1Х1+2Х2+ ... +qХq) = 1Z(X1) + 2Z(X2) + ... +qZ(Xq)=1m + 2m + ... +qm = m.
т. е. линейная функция Z принимает минимальное значение в произвольной точке Х, являющейся выпуклой линейной комбинацией угловых точек Х1, Х2, ... , Хq .