
- •Раздел 3
- •Глава 19
- •19.1. Природа и свойства электромагнитного излучения
- •19.2. Классификация спектроскопических методов анализа
- •Вид используемого электромагнитного излучения
- •Глава 20
- •20.1. Основной закон поглощения электромагнитного излучения
- •20.2. Отклонения от основного закона светопоглощения
- •20.3. Атомно-абсорбционная спектроскопия
- •20.3.1. Процессы, приводящие к появлению аналитического сигнала
- •20.3.2. Измерение аналитического сигнала
- •20.3.3. Практическое применение
- •20.4. Молекулярная абсорбционная спектроскопия в уф- и видимой области
- •20.4.1. Молекулярные спектры поглощения в уф- и видимой области
- •20.4.2. Измерение аналитического сигнала
- •20.4.3. Практическое применение и основные приёмы фотометрического анализа
- •Фотометрические реакции
- •Дифференциальная (разностная) фотометрия
- •Производная спектрофотометрия
- •20.5.1. Процессы, приводящие к появлению аналитического сигнала
- •20.5.2. Общая характеристика ик-спектров
- •20.5.3. Измерение аналитического сигнала
- •20.5.4. Практическое применение
- •Глава 21
- •21.1. Атомно-эмиссионная спектроскопия
- •21.1.1. Процессы, приводящие к появлению аналитического сигнала
- •21.1.2. Измерение аналитического сигнала
- •21.1.3. Практическое применение
- •20.2. Люминесцентная спектроскопия
- •20.2.1 Классификация видов люминесценции
- •21.2.2 Механизм молекулярной фотолюминесценции. Флуоресценция и фосфоресценция
- •21.2.3 Основные характеристики и закономерности люминесценции
- •21.2.4. Влияние различных факторов на интенсивность флуоресценции растворов
- •Природа вещества
- •21.2.5. Измерение аналитического сигнала
- •21.2.6. Практическое применение и основные приёмы люминесцентного анализа
- •Глава 22
- •22.1. Общая характеристика
- •22.2. Классификация хроматографических методов
- •22.3. Хроматографические параметры
- •Хроматографические характеристики, используемые для идентификации веществ (характеристики удерживания)
- •Хроматографические характеристики, используемые для количественного определения веществ
- •22.4. Теории хроматографического разделения
- •Глава 23
- •23.1. Общая характеристика
- •23.2. Устройство газового хроматографа
- •Хроматографическая колонка
- •Детекторы
- •23.3. Особенности газотвёрдофазной хроматографии
- •23.4. Особенности газожидкостной хроматографии
- •23.5. Индексы удерживания Ковача
- •23.6. Практическое применение
- •Глава 24
- •24.1. Общая характеристика
- •24.2. Плоскостная хроматография
- •24.2.1. Методика получения плоскостной хроматограммы
- •24.2.2. Анализ плоскостной хроматограммы
- •24.2.3. Практическое применение
- •24.3. Колоночная жидкостная хроматография
- •24.3.1. Устройство жидкостного хроматографа
- •24.3.2. Практическое применение
- •24.4. Характеристика отдельных видов жидкостной хроматографии
- •24.4.1. Ионообменная хроматография
- •Неподвижные и подвижные фазы
- •24.4.2. Эксклюзионная хроматография
- •Глава 25
- •25.1. Основные понятия, связанные с электрохимическими методами анализа
- •25.2. Классификация электрохимических методов анализа
- •В табл. 25.1 приведена классификация основных электрохимических методов анализа в зависимости от измеряемого параметра.
- •25.3. Кондуктометрия
- •25.3.1. Теоретические основы и классификация
- •25.3.2. Измерение аналитического сигнала
- •25.3.4. Практическое применение
- •25.3.5. Понятие о высокочастотной кондуктометрии
- •Глава 26
- •26.1. Потенциометрический метод анализа
- •26.1.1. Общая характеристика и классификация
- •26.1.2. Условия измерения аналитического сигнала
- •26.1.3. Индикаторные электроды
- •26.1.4. Прямая потенциометрия
- •26.1.5. Потенциометрическое титрование
- •26.2. Кулонометрический метод анализа
- •26.2.1. Общая характеристика и классификация
- •26.2.2. Прямая кулонометрия
- •1) Рабочий электрод;
- •2) Электрод сравнения;
- •3) Вспомогательный электрод
- •26.2.3. Кулонометрическое титрование
- •Глава 27
- •27.1. Принцип измерения аналитического сигнала.
- •27.2. Вольтамперограмма
- •27.3. Некоторые современные разновидности вольтамперометрии
- •27.4. Практическое применение вольтамперометрии. Амперометрическое титрование
20.4.2. Измерение аналитического сигнала
Объектами исследования в фотометрии обычно являются растворы. Принцип измерения аналитического сигнала заключается в сравнении интенсивности двух световых потоков, один из которых проходит через исследуемый раствор, а второй - через раствор сравнения.
Принципиальная схема однолучевого прибора показана на рис. 20.12.
Рис. 20.12. Принципиальная схема однолучевого прибора для измерения светопоглощения в УФ- и видимой областях спектра
Для получения видимого и длинноволнового УФ-излучения применяют также галогеновые лампы.
Источники излучения, используемые в фотометрии, дают непрерывные спектры. В зависимости от того, каким образом происходит выделение из непрерывного спектра испускания источника нужного спектрального интервала, абсорбционные спектрометры можно разделить на 2 класса: фотоэлектроколориметры и спектрофотометры.
В фотоэлектроколориметрах для выделения нужного интервала длин волн применяют набор светофильтров. Величина полуширины пропускания используемых светофильтров составляет в среднем 25-45 нм. Нижняя граница рабочих длин волн составляет для большинства моделей фотоэлектроколориметров примерно 315 нм. Фотоэлектроколориметры используют обычно для проведения серийных измерений концентрации веществ, поглощающих в видимой или длинноволновой УФ-области электромагнитного спектра.
В спектрофотометрах для выделения из спектра испускания источника излучения с нужной длиной волны применяют монохроматоры: дифракционные решётки или призмы. Монохроматор позволяет получить электромагнитное излучение с гораздо более высокой степенью монохроматичности, чем светофильтр. Спектрофотометры имеют более сложное устройство, чем фотоэлектроколориметры и используются для получения спектров поглощения веществ, определения концентрации веществ, поглощающих при длинах волн менее 300 нм, имеющих узкие полосы поглощения и т.д.
Растворы веществ, поглощение которых измеряется, помещают в специальные сосуды прямоугольной или, реже, цилиндрической формы, называемые кюветами. Кювета, содержащая раствор исследуемого вещества, называется рабочей, а кювета, содержащая раствор сравнения - кюветой сравнения. Кюветы, применяемые для работы в видимой области спектра, могут быть сделаны из стекла. Для работы в области длин волн меньше 325 нм необходимы кварцевые кюветы. В качестве материала для изготовления кювет используются также органические полимеры. Как правило, каждый прибор для фотометрических измерений снабжён набором кювет (толщиной от 0,1 до 5 см). Чаще всего в работе, особенно для спектрофотометров, используются кюветы с толщиной 1 см. Кроме обычных кювет существуют кюветы специальной конструкции, например, термостатированные, проточные.
В однолучевых приборах в поток излучения вначале помещают кювету сравнения и настраивают по ней прибор на ноль оптической плотности. Затем в поток излучения помещают рабочую кювету. При изменении настройку прибора следует повторить. В двухлучевых спектрометрах поток, выходящий из монохроматора, с помощью зеркала специальной конструкции расщепляется на два одинаковых потока: один направляется на кювету сравнения, а второй - на рабочую кювету. Потоки, выходящие из кювет, затем направляются на один и тот же детектор. Двухлучевые приборы удобны при автоматической регистрации спектров поглощения, так как их не нужно перенастраивать при изменении длины волны.