
- •Раздел 3
- •Глава 19
- •19.1. Природа и свойства электромагнитного излучения
- •19.2. Классификация спектроскопических методов анализа
- •Вид используемого электромагнитного излучения
- •Глава 20
- •20.1. Основной закон поглощения электромагнитного излучения
- •20.2. Отклонения от основного закона светопоглощения
- •20.3. Атомно-абсорбционная спектроскопия
- •20.3.1. Процессы, приводящие к появлению аналитического сигнала
- •20.3.2. Измерение аналитического сигнала
- •20.3.3. Практическое применение
- •20.4. Молекулярная абсорбционная спектроскопия в уф- и видимой области
- •20.4.1. Молекулярные спектры поглощения в уф- и видимой области
- •20.4.2. Измерение аналитического сигнала
- •20.4.3. Практическое применение и основные приёмы фотометрического анализа
- •Фотометрические реакции
- •Дифференциальная (разностная) фотометрия
- •Производная спектрофотометрия
- •20.5.1. Процессы, приводящие к появлению аналитического сигнала
- •20.5.2. Общая характеристика ик-спектров
- •20.5.3. Измерение аналитического сигнала
- •20.5.4. Практическое применение
- •Глава 21
- •21.1. Атомно-эмиссионная спектроскопия
- •21.1.1. Процессы, приводящие к появлению аналитического сигнала
- •21.1.2. Измерение аналитического сигнала
- •21.1.3. Практическое применение
- •20.2. Люминесцентная спектроскопия
- •20.2.1 Классификация видов люминесценции
- •21.2.2 Механизм молекулярной фотолюминесценции. Флуоресценция и фосфоресценция
- •21.2.3 Основные характеристики и закономерности люминесценции
- •21.2.4. Влияние различных факторов на интенсивность флуоресценции растворов
- •Природа вещества
- •21.2.5. Измерение аналитического сигнала
- •21.2.6. Практическое применение и основные приёмы люминесцентного анализа
- •Глава 22
- •22.1. Общая характеристика
- •22.2. Классификация хроматографических методов
- •22.3. Хроматографические параметры
- •Хроматографические характеристики, используемые для идентификации веществ (характеристики удерживания)
- •Хроматографические характеристики, используемые для количественного определения веществ
- •22.4. Теории хроматографического разделения
- •Глава 23
- •23.1. Общая характеристика
- •23.2. Устройство газового хроматографа
- •Хроматографическая колонка
- •Детекторы
- •23.3. Особенности газотвёрдофазной хроматографии
- •23.4. Особенности газожидкостной хроматографии
- •23.5. Индексы удерживания Ковача
- •23.6. Практическое применение
- •Глава 24
- •24.1. Общая характеристика
- •24.2. Плоскостная хроматография
- •24.2.1. Методика получения плоскостной хроматограммы
- •24.2.2. Анализ плоскостной хроматограммы
- •24.2.3. Практическое применение
- •24.3. Колоночная жидкостная хроматография
- •24.3.1. Устройство жидкостного хроматографа
- •24.3.2. Практическое применение
- •24.4. Характеристика отдельных видов жидкостной хроматографии
- •24.4.1. Ионообменная хроматография
- •Неподвижные и подвижные фазы
- •24.4.2. Эксклюзионная хроматография
- •Глава 25
- •25.1. Основные понятия, связанные с электрохимическими методами анализа
- •25.2. Классификация электрохимических методов анализа
- •В табл. 25.1 приведена классификация основных электрохимических методов анализа в зависимости от измеряемого параметра.
- •25.3. Кондуктометрия
- •25.3.1. Теоретические основы и классификация
- •25.3.2. Измерение аналитического сигнала
- •25.3.4. Практическое применение
- •25.3.5. Понятие о высокочастотной кондуктометрии
- •Глава 26
- •26.1. Потенциометрический метод анализа
- •26.1.1. Общая характеристика и классификация
- •26.1.2. Условия измерения аналитического сигнала
- •26.1.3. Индикаторные электроды
- •26.1.4. Прямая потенциометрия
- •26.1.5. Потенциометрическое титрование
- •26.2. Кулонометрический метод анализа
- •26.2.1. Общая характеристика и классификация
- •26.2.2. Прямая кулонометрия
- •1) Рабочий электрод;
- •2) Электрод сравнения;
- •3) Вспомогательный электрод
- •26.2.3. Кулонометрическое титрование
- •Глава 27
- •27.1. Принцип измерения аналитического сигнала.
- •27.2. Вольтамперограмма
- •27.3. Некоторые современные разновидности вольтамперометрии
- •27.4. Практическое применение вольтамперометрии. Амперометрическое титрование
Инструментальные
методы анализа
Раздел 3
Глава 19
Спектроскопическими называются методы анализа, в которых качественно и количественно измеряется взаимодействие электромагнитного излучения с веществом.
19.1. Природа и свойства электромагнитного излучения
Электромагнитное излучение имеет двойственную природу и обладает как волновыми, так и корпускулярными (дискретными) свойствами.
Электромагнитная волна состоит из двух компонентов - электрического и магнитного, которые перпендикулярны друг другу и к направлению движения волны (рис.19.1). В отличие от других волновых процессов, например, звуковых волн для распространения электромагнитного излучения не нужна проводящая среда
.
Рис. 19.1. Электромагнитная волна
Электромагнитная волна, как и любая волна, обладает следующими основными параметрами.
Длина
волны
()
- расстояние,
которое проходит волна за один период
её колебаний (расстояние между двумя
последовательными максимумами).
Длина волны измеряется в метрах (м). На практике обычно используют кратные единицы - нанометр (1 нм = 110-9 м) или микрометр (1 мкм = 110-6 м).
Частота ()- число колебаний в 1 секунду.
Частота измеряется в герцах (1Гц = 1 с-1) или в кратных ему единицах, например, 1МГц = 1106 Гц. Длина волны и частота колебаний связаны между собой следующим уравнением
,
где с - скорость распространения волны в данной среде.
Для электромагнитной волны
,
где с0 - скорость света в вакууме (2,99792108 м/с), n - показатель преломления среды.
Частота является более фундаментальной характеристикой, чем длина волны. Она зависит только от свойств источника излучения и не зависит от свойств среды. Длина волны зависит от природы среды, температуры и давления.
Волновое
число
- число
волн, приходящихся на 1 см в вакууме.
,
где - длина волны (см).
Размерность
- см-1.
Электромагнитное излучение можно рассматривать как поток частиц энергии - фотонов. Связь между волновой и корпускулярной природой электромагнитного излучения устанавливает уравнение Планка:
где h - постоянная Планка (h = 6,626210-34 Джс)
Единицей измерения энергии является Джоуль (Дж). В спектроскопии часто используют внесистемную единицу - электрон-вольт (1эВ = 1,602210-19 Дж). Чем больше длина волны электромагнитного излучения (меньше частота колебаний), тем меньше его энергия.
Совокупность всех энергий (длин волн, частот) электромагнитного излучения называется электромагнитным спектром.
В спектроскопических методах анализа спектром (спектром поглощения, спектром испускания) называется зависимость между энергией кванта и числом квантов, обладающих данной энергией (рис 19.2).
Рис. 19.2. Спектр (поглощения, испускания) в спектроскопических методах анализа
19.2. Классификация спектроскопических методов анализа
Существует несколько подходов к классификации спектроскопических методов анализа. Классификационным критерием может быть вид электромагнитного излучения, характер его взаимодействия с веществом, вид частиц, взаимодействующих с электромагнитным излучением.