Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3 курс. Зима. Эконометрика. Тинякова. Лекции. 2....doc
Скачиваний:
8
Добавлен:
09.12.2018
Размер:
235.01 Кб
Скачать

4.2. Метод Койка

Этот метод основан на естественном предположении о том, что степень влияния лаговой переменной убывает по мере возрастания лага. Причем, такое убывание происходит согласно закону, описываемому геометрической прогрессией, т.е. коэффициенты при соответственно равны . Таким образом, в общем случае -й коэффициент модели с бесконечным числом лагов можно записать в виде

, , . (4.132)

Используя такое представление коэффициентов, модель с бесконечным числом лагов можно преобразовать в следующее уравнение:

. (4.133)

В результате проведенного преобразования получена модель всего с тремя неизвестными коэффициентами , которые можно определить различными способами. Один из методов предусматривает подбор параметра из интервала . Для этого параметру последовательно присваиваются значения с некоторым фиксированным шагом (например, ) и для каждого так полученного значения рассчитывается

, (4.134)

где – количество лагов, участвующих в расчете.

Величина определяется из условия, что дальнейшее добавление лаговых значений практически не изменяет величину , т.е. изменение , вызванное добавлением -го лага, меньше ранее заданного положительного числа. Замена лаговых переменных одной интегрированной сводит задачу построения модели с лаговыми переменными к оцениванию коэффициентов уравнения

(4.135)

и выбору того значения , при котором коэффициент детерминации уравнения (4.135) будет наибольшим. Полученные таким образом параметры подставляются в уравнение (4.133), которое готово для проведения прогнозных расчетов.

Второй метод построения модели с бесконечным числом лагом основан на преобразовании Койка. Для выполнения этого преобразования запишем уравнение для момента времени

. (4.136)

Умножим полученное уравнение на и вычтем его из (4.133). Получим следующее уравнение:

, (4.137)

которое можно переписать в виде

, (4.138)

где – скользящая средняя.

Полученное уравнение является результатом преобразования Койка. Оно не содержит бесконечного числа лагов с убывающими по закону геометрической прогрессии коэффициентами и представляет собой уравнение с авторегрессионным членом (4.138). Для его построения необходимо оценить всего три коэффициента . Модель (4.138), несмотря на компактность своей записи, позволяет анализировать краткосрочные и долгосрочные эффекты переменных. В краткосрочном периоде значение можно считать фиксированным. Тогда краткосрочный мультипликатор равен .

Долгосрочный мультипликатор вычисляется по формуле суммы бесконечно убывающей геометрической прогрессии. Если далее предположить, что в долгосрочном периоде стремится к некоторому своему равновесному значению , то значение также стремится к своему равновесному значению . Для равновесного состояния уравнение (4.138) без учета случайного отклонения примет вид

(4.139)

и можно определить равновесное значение

. (4.140)

Коэффициент, стоящий при в (4.140), является долгосрочном мультипликатором, так как он в соответствии с известной формулой является суммой бесконечно убывающей геометрической прогрессии, т.е.

. (4.141)

Очевидно, что при сила воздействия долгосрочного мультипликатора превосходит силу воздействия краткосрочного, поскольку .

Применение МНК для оценки параметров лаговой модели, полученной с помощью преобразования Койка, не всегда корректно в силу следующих обстоятельств:

1) Переменная , которая используется как независимая переменная, имеет стохастическую природу, как и , что нарушает одну из предпосылок МНК. Кроме того, она скорее коррелирует со случайной составляющей , чем не коррелирует.

2) Несмотря на то, что для предпосылки МНК выполняются, но для имеет место явная автокорреляция, которую можно тестировать -статистикой Дарбина.

Если не применять специальных методов оценивания, то, возможно, что полученные оценки коэффициентов этой модели окажутся смещенными и несостоятельными.