Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Реферат элтех 2 - Магнитные цепи, синхронные ма....doc
Скачиваний:
48
Добавлен:
07.12.2018
Размер:
544.77 Кб
Скачать
  1. Устройство и принцип действия двигателя постоянного тока.

Устройство простейшего электродвигателя постоянного тока. На рис. 1-1 представлен простейший электродвигатель постоянного тока, а на рис. 1-2 дано его схематическое изображение в осевом направлении. Неподвижная часть двигателя, называемая индуктором, состоит из полюсов и круглого стального ярма, к которому прикрепляются полюсы. Назначением индуктора является создание в электродвигателе основного магнитного потока. Индуктор изображенной на рис. 1-1 простейшего электродвигателя имеет два полюса 1 (ярмо индуктора на рис. 1-1 не показано). Вращающаяся часть электродвигателя состоит из укрепленных на валу цилиндрического якоря 2 и коллектора. 3. Якорь состоит из сердечника, набранного из листов электротехнической стали, и обмотки, укрепленной на сердечнике якоря. Обмотка якоря в показанном на рис. 1-1 и 1-2 простейшем электродвигателе имеет один виток. Концы витка соединены с изолированными от вала медными пластинами коллектора, число которых в рассматриваемом случае равно двум. На коллектор налегают две неподвижные щетки 4, с помощью которых обмотка якоря соединяется с внешней цепью. Основной магнитный поток в нормальных электродвигателях постоянного тока создается обмоткой возбуждения, которая расположена на сердечниках полюсов и питается постоянным током. Магнитный поток проходит от северного полюса N через якорь к южному полюсу S и от него через ярмо снова к северному полюсу. Сердеч­ники полюсов и ярмо также изготовляются из ферромагнитных материалов. Режим генератора. Рассмотрим сначала работу электродвигателя в режиме генератора.

Рис. 1-1. Простейший электродвигатель постоянного тока Рис. 1-2. Работа простейшего электродвигателя постоянного тока в режиме Генератора (а) и двигателя (б).

Предположим, что якорь электродвигателя (рис. 1-1 и 1-2, а) приводится во вращение по часовой стрелке. Тогда в проводниках обмотки якоря индуктируется ЭДС, направление которой может быть определено по правилу правой руки (рис. 1-3, а) и показано на рис. 1-1 и 1-2, а. Поскольку поток полюсов предполагается неизменным, то эта ЭДС индуктируется только вследствие вращения якоря и называется ЭДС вращения. В обоих проводниках вследствие симметрии индуктируются одинаковые ЭДС, которые по контуру витка складываются. Частота ЭДС f в двухполюсном электродвигателе равна скорости вра­щения якоря n, выраженной в оборотах в секунду: f = n, а в общем случае, когда машина имеет р пар полюсов с чередующейся полярностью: f = pn

Таким образом, в генераторе коллектор является механическим выпрямителем, который преобразовывает переменный ток обмотки якоря в постоянный ток во внешней цепи. Рис. 1-3. Правила правой (а) и левой (б) руки.

  1. Способы пуска в ход двигателей постоянного тока

При включении двигателя возникает большой пусковой ток, превышающий номинальный в 10 - 20 раз. Для ограничения пускового тока двигателей мощностью более 0,5 кВт последовательно с цепью якоря включают пусковой реостат (рис. 7).Величину сопротивления пускового реостата можно определить по выражению

Rn =U/(1,8 - 2,5)Iном-Rя

где U - напряжение сети, В;

Iном - номинальный ток двигателя. А;

Rя - сопротивление обмотки якоря, Ом.

Перед включением двигателя необходимо убедиться в том, что рычаг 2 пускового реостата (рис.7) находится на холостом контакте 0. затем включают рубильник и рычаг реостата переводят на первый промежуточный контакт. При этом двигатель возбуждается, а в цепи якоря появляется пусковой ток, величина которого ограничена всеми четырьмя секциями сопротивления Rn. По мере увеличения частоты вращения якоря пусковой ток уменьшается и рычаг реостата переводят на второй, третий контакт и т.д., пока он не окажется на рабочем контакте. Пусковые реостаты рассчитаны на кратковременный режим работы, а поэтому рычаг реостата нельзя длительно задерживать на промежуточных контактах: в этом случае сопротивления реостата перегреваются и могут перегореть. Прежде чем отключить двигатель от сети, необходимо рукоятку реостата перевести в крайнее левое положение. При этом двигатель отключается от сети, но цепь обмотки возбуждения остается замкнутой на сопротивление реостата. В противном случае могут появиться большие перенапряжения в обмотке возбуждения в момент размыкания цепи. При пуске в ход двигателей постоянного тока регулировочный реостат в цепи обмотки возбуждения следует полностью вывести для увеличения потока возбуждения. Для пуска двигателей с последовательным возбуждением применяют двухзажимные пусковые реостаты, отличающиеся от трехзажимных отсутствием медной дуги и наличием только двух зажимов - Л и Я.

  1. Механическая характеристика двигателей постоянного тока (n=f(M)) с параллельным, последовательным и смешанным возбуждением.

Двигатели постоянного тока находят широкое применение в промышленных, транспортных и других установках, где требуется широкое и плавное регулирование скорости вращения (прокатные станы, мощные металлорежущие станки, электрическая тяга на транспорте и т. д.).

По способу возбуждения двигатели постоянного тока подразделяются аналогично генераторам на двигатели независимого, параллельного, последовательного и смешанного возбуждения. Схемы двигателей и генераторов с данным видом возбуждения одинаковы (рис. 9-1). В двигателях независимого возбуждения токи якоря 1а и нагрузки равны: I = 1а, в двигателях параллельного и смешанного возбуждения I= Iа +Ib и в двигателях последовательного возбуждения I = 1а = Iв. С независимым возбуждением от отдельного источника тока обычно выполняются мощные двигатели с целью более удобного и экономичного регулирования величины тока возбуждения. По своим свойствам двигатели независимого и параллельного возбуждения почти одинаковы, и поэтому первые ниже отдельно не рассматриваются.

Рис 10-1 Энергетическая диаграмма двигателя параллельного возбуждения

Энергетическая диаграмма двигателя параллельного возбуждения изображена на рис. 10-1. Первичная мощность Рх является электрической и потребляется из питающей сети. За счет этой мощности покрываются потери на возбуждение рв и электрические потери рдла = PaRa в цепи якоря, а оставшаяся часть составляет электромагнитную мощность якоря РЭм = EJa, которая превращается в механическую мощность Рмх. Потери магнитные рмг, добавочные рд и механические рмх покрываются за счет механической мощности, а остальная часть этой мощности представляет собой, полезную механическую мощность Р2 на валу. Аналогичные энергетические диаграммы, иллюстрирующие преобразование энергии в двигателе, можно построить и для других типов двигателей