
- •4.1.Перенапряжения на длинной ненагруженной линии
- •4.2. Ограничение перенапряжений на длинных линиях с помощью реакторов
- •4.3.Перенапряжения в электропередачах с продольной емкостной компенсацией
- •4.4.Особенности емкостного эффекта в линии с двухсторонним питанием
- •4.5.Перенапряжения ву длинных линиях при одностороннем питании и несимметричном к.З.
- •5.Резонансные перенапряжения в электрических сетях
- •5.1.Общие положения
4. ПОВЫШЕНИЯ НАПРЯЖЕНИЯ, ОБУСЛОВЛЕННЫЕ ЕМКОСТНЫМ ЭФФЕКТОМ
4.1.Перенапряжения на длинной ненагруженной линии
При отключении длинной линии со стороны нагрузки или включении ее со стороны источника с последующей синхронизацией систем, происходит существенное повышение напряжения в начале и особенно в конце линии за счет емкостного эффекта, т.е. протекания емкостного тока через индуктивность источника и линии, рис.4.1.
Рис.4.1. Расчетная схема
Длинные линии неправомерно, как это делалось ранее, замещать Т или П-образной схемой и поэтому расчеты выполняются с помощью уравнений длинных линий. Для линий с распределенными параметрами можно записатть следующие уравнения, связывающие токи и напряжения
и
,
где
- коэффициент распространения;
- коэффициент затухания;
- коэффициент сдвига фаз;
-
волновое сопротивление линии.
При неучете коронирования проводов (go=0) имеем
.
Учитывая,
что для воздушных ЛЭП ro<<jLo
и
,
получим
,
где
рад/км;
;
При длине линий менее 1500 км, когда резонанса на частоте нет, уравнения для разомкнутой на конце линии (I2=0) принимают вид
и
.
Отношение напряжения в конце линии к напряжению в начале называется коэффициентом передачи
.
Поскольку
l<<1,
chl1
и shll
, то
.
На основе этой формулы может быть построена зависимость U2 от l, рис.4.2, которая четко выявляет резонансные свойства схемы. Резонанс наступает при l=0,5, т.е. при l=1500 км и 1. Напряжение в конце линии будет равно
где
- добротность линии.
Рис.4.2.Резонансные кривые
1 – xs=0; 2 – xs=0,5 ; 3 – xs=0 сучетом короны
Входное
сопротивление разомкнутой линии
.
Тогда
и для любой точки линии
.
Если
система далека от резонанса и активными
потерями можно пренебречь (=0,
ro=0),
то
и
.
Тогда
и
.
Для
линий с l<1500
км (l<0,5)
Zвх
имеет емкостный характер
,
Хвх=
Z
ctgl
и
При Хs0 точка резонанса сдвигается в сторону меньших длин, т.к. к индуктивности линии добавляется индуктивность источника. Резонанс наступает при Xs=Xвх , т.е. емкостное сопротивление линии равно индуктивному сопротивлению источника, что эквивалентно равенству собственной частоты схемы и частоты источника.
Для небольших длин, характерных для ЛЭП до 220 кВ, Zвх можно рассчитать по более простым формулам, перейдя от тригонометрических функций к их аргументам. При l=100 км, l=0,105 рад и cosl1, a sinll и тогда
,
т.е. такую линию можно заменить
сосредоточенной емкостью.
При l=200 – 300 км cosll2, sinll , тогда
.
Это соотношение соответствует Т-образной схеме замещения.
Повышение напряжения на линии может привести к появлению короны. Возникновение короны учитывается введением активной проводимости go и добавочной емкости Со, зависящих от Ux в данной точке линии. Вследствие значительных потерь резонансная кривая (3 на рис.4.2) получается менее острой с максимумом (33,5)Uф сдвинутым в сторону меньших длин из-за влияния дополнительной емкости. В дорезонансной области влияние короны невелико.
В расчетах значения go и Со могут быть определны по формулам
и
,
где Uк
– напряжение начала короны;
и
- коэффициенты, уменьшающиеся с увеличением
числа проводов в расщепленной фазе:
=0,7
0,35 и =0,22
0,11.
Для линий относительно небольшой длины (300 – 600 км), у которых напряжение вдоль линии изменяется сравнительно, Со и go могут быть приняты постоянными для всех точек линии, Тогда
где
к
– дополнительное затухание, вносимое
коронированием;
Напряжение в конце длинной линии, присоединенной к источнику бесконечной мощности (Xs=0), максимально при kl=0,5 и может быть найдено совместным решением двух уравнений, одно из которых представляет собой
Второе
уравнение задается графически функцией
;
при kl=0,5
Up=0,81U2.
Хотя в резонансной области влияние короны весма велико ( снижение напряжения до 3 – 3,5 Е), она не может ограничить перенапряжения до безопасного уровня.