Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции / lekciy_po_kursu_teoriya / Лекции ч.1.doc
Скачиваний:
88
Добавлен:
22.02.2014
Размер:
1.16 Mб
Скачать

§3. Частотный критерий Михайлова.

Частотные критерии устойчивости позволяют судить об устойчивости систем автоматического управления по виду их частотных характеристик.

Пусть характеристическое уравнение системы имеет вид:

(1)

Заменив в Н(р) оператор р на оператор jω, получим вектор Н(jω)

Пусть p1,p2,......,pn- корни характеристического уравнения. Тогда в соответствии с теоремой Безу характеристическое уравнение (1) можно переписать в виде:

или

Н(jω)(2)

Величина (jω-pj) геометрически изображается векторами в комплексной плоскости, а Н(jω) представляет собой вектор, равный произведению элементарных векторов (jω-pi), модуль этого вектора равен произведению модулей элементарных векторов, а фаза – сумма фаз элементарных векторов.

Условимся считать вращение против часовой стрелки положительным, тогда при изменении ωот 0 до∞ каждый элементарный вектор повернется на некоторый угол.

Пусть p1- отрицательный действительный корень (“левый”, т. е. слева от мнимой оси), равный “ -α1”. При измененииωот 0 до∞

arg(jω- p1)

т. е. каждый “левый” действительный корень характеристического уравнения поворачивает вектор характеристического уравнения в комплексной плоскости при изменении ωот 0 до∞ на уголв положительном направлении.

Если p2- положительный действительный корень (“правый”), равный “+α2”,то при измененииωот 0 до∞

arg(jω- p2)

т. е. каждый “правый” действительный корень характеристического уравнения поворачивает вектор характеристического уравнения в комплексной плоскости при изменении ωот 0 до∞ на уголв отрицательном направлении.

Еслиp3,4- корени комплексно-сопряженные с отрицательной действительной частью, равные –α3±jβ3, то

при изменении ωот 0 до∞

arg(jω- p3) (jω- p4)

т. е. пара комплексно-сопряженных корней с отрицательной действительной частью поворачивает вектор характеристического уравнения в комплексной плоскости при изменении ωот 0 до∞ на угол +2(π/2).

Если p5,6- комплексно-сопряженные корни с положительной вещественной частью, равные +α4±jβ4, то при измененииωот 0 до∞

arg(jω- p5) (jω- p6)

( jω-р6)

j

4+jβ4

+jβ4

(jω-р5)

γ

4

γ

-jβ4

4-jβ4

т.е. пара комплексно-сопряжённых корней с положительной действительной частью поворачивает вектор характеристического уравнения в комплексной плоскости при изменении ω от 0 до ∞ на угол 2π⁄2 в отрицательном направлении.

Анализируя выше изложенные случаи, можно сделать вывод:

Если система устойчива - все корни левые, и каждый даёт поворот на +π⁄2. Произведение векторов (jω-pi)- тоже вектор. При изменении ω от 0 до ∞ его конец описывает кривую, называемую годографом Михайлова.

Следовательно, если все корни левые, угол поворота вектора характеристического уравнения (вектор Михайлова) равен сумме углов поворота векторов (jω-pi), который в свою очередь равен +nπ⁄2. Если же хоть один корень правый, угол поворота вектора Михайлова меньшеnπ⁄2, гдеn- порядок характеристического уравнения.

Таким образом, критерий Михайлова формулируется так:

САР устойчива, если при изменении ω от 0 до ∞ годограф Михайлова проходит последовательно nквадрантов, не обращаясь в 0, или САР устойчива, если при изменении ω от 0 до ∞ вектор Михайлова поворачивается на уголnπ⁄2 в положительном направлении, гдеn- порядок характеристического уравнения.

Годограф устойчивых систем

При увеличении статического коэффициента передачи разомкнутой САР, коэффициент а0растёт и годограф смещается вправо, параллельно самому себе. При некотором а0 кр годограф проходит через начало координат. Это граница устойчивости. Очевидно а0 кр=АВ, т.е. отрезку действительной оси, отсекаемому годографом Михайлова.

Соседние файлы в папке lekciy_po_kursu_teoriya