
- •Физиология и б и о ф и 3 и к а в о 3 б у д и м ы X клеток
- •Действие постоянного тока на возбудимые ткани
- •Строение и функции цитоплазматнческой мембраны клеток.
- •Классификация и структура ионных каналов цито плазматической
- •Соотношение фаз потенциала действия и возбудимости
- •Физиология мышц
- •Механизмы мышечного сокращения
- •Энергетика мышечного сокращения
- •Влияние частоты и силы раздражения на амплитуду сокращения
- •Режимы сокращения. Сила и работа мышц.
- •Утомление мышц
- •Двигательные единицы
- •Физиология гладких мышц
- •Физиология процессов межклеточной передачи возбуждения Проведение возбуждения по нервам
- •Сннаптическая передача Строение и классификация синапсов.
- •Механизмы синаптической передачи. Постсинаптические потенциалы.
- •Физиология центральной нервнойсистемы Классификация, строение и функции нейронов. Нейроглия.
- •Методы исследования функций цнс
- •Свойства нервных центров
- •Торможение в ц.Н.С.
- •Закономерности проведения возбуждения и процессов торможения в нервных центрах.
- •Механизмы координации рефлексов.
- •Частная физиология цнс Функции спинного мозга.
- •Функции продолговатого мозга.
- •Функции моста и среднего мозга.
- •Функции промежуточного мозга.
- •Функции ретикулярной формации ствола мозга
- •Функции мозжечка
- •Функции базальных ядер
- •Общие принципы организации движений
- •Лимбическая система.
- •Функции коры больших полушарий
- •Функциональная асимметрия полушарий
- •Электроэнцефалография. Ее значение для экспериментальных исследований и клиники
- •Структурно-функциональные особенности вегетативной нервной системы
- •Механизмы синаптической передачи в вегетативной нервной системе
- •Функциии крови
- •Состав крови. Основные физиологические константы крови
- •Состав, свойства и значение компонентов плазмы
- •Для быстрого подсчета, при большом количестве анализов, используют
- •Реакция оседания эритроцитов
- •Функции лейкоцитов
- •Структура и функции тромбоцитов
- •Регуляция эритро- я лейкопоэза
- •Механизмы остановки кровотечения. Процесс свертывания крови
- •Фибринолиз
- •Противосвертывающая система
- •Факторы влияющие на свертывание крови
- •Группы крови. Резус-фактор. Переливание крови
- •Защитная функция крови. Иммунитет. Регуляция иммунного ответа
- •Физиология кровообращения Общий план строения системы кровообращения
- •Механизмы возбудимости, автоматии и сокращений кардиомиоцитов
- •Рефлекторная и гуморальная регуляция деятельности сердца.
- •Проявления сердечной деятельности. Механические и акустические проявления.
- •Электрокардиография
- •Эхокардиография
- •Факторы обеспечивающие движение крови
- •Механизмы регуляции тонуса сосудов
- •1. Метаболические факторы. Это несколько групп веществ.
- •2. Гормоны. По механизму действия на сосуды делятся на 2 группы:
- •Центральные механизмы регуляции сосудистого тонуса. ,. Сосудодвигательные центры
- •Физиология дыхания
- •Показатели легочной вентиляции
- •Обмен газов в легких
- •Транспорт газов кровью
- •Обмен дыхательных газов в тканях
- •Рефлекторная регуляция дыхания
- •Гуморальная регуляция дыхания
- •Дыхание при пониженном атмосферном давлении. Гипоксия
- •Пищеварение в желудке
- •Состав и свойства желудочного сока. Значение его компонентов
- •Моторная и эвакуаторная функции желудка
- •Методы исследования функций желудка
- •Механизмы выработки и регуляции секреции панкреатического сока
- •1. Минеральные вещества. Катионы натрия, калия, кальция, гидрокарбонат, фосфат анионы, анионы
- •Функции толстого кишечника
- •2. Простые органические вещества - продукты белкового обмена.
- •4. Муцин. Образуется в железистых клетках.
- •Моторная функция тонкого и толстого кишечника
- •Механизмы всасывания веществ в пищеварительном канале
- •Пищевая мотивация
- •Физиология обмена веществ и энергии
- •Основной обмен
- •Общий обмен энергии
- •Физиологические основы питания. Режимы питания
- •Терморегуляция
- •Физиология процессов выделения Функции почек. Механизмы мочеобразования
- •Регуляция мочеобразования
- •1.Классические это такие, которые вырабатываемые в соответствии с вышеприведёнными условиями Пример - слюноотделение, выработанное на звонок.
- •2. Побуждающая функция. Эмоции стимулируют целенаправленное поведение. Например, отрицательные эмоции при голоде стимулируют пищедобывающее поведение.
- •Функциональные состояния организма. Стресс, его физиологическое значение.
- •Теории механизмов сна.
- •Сигнальные системы. Функции речи. Речевые функции полушарий
- •На основе преобладания той или иной сигнальной системы и.П. Павлов выделил два типа
- •Мышление и сознание
- •Формирование половой мотивации.
- •Адптация, ее виды и периоды
- •Физиологические основы трудовой деятельности
- •Биоритмы
Торможение в ц.Н.С.
Явление центрального торможения обнаружено И.М. Сеченовым в 1862 году. Он удалял у лягушки полушария мозга и определял время спинномозгового рефлекса на раздражение лапки серной кислотой. Затем на таламус, т.е. зрительные бугры накладывал кристаллик поваренной соли и обнаружил, что время рефлекса значительно увеличивалось. Это свидетельствовало о торможении рефлекса Сеченов сделал вывод, что вышележащие Н.Ц. при своем возбуждении тормозят нижележащие. Торможение в ЦНС препятствует развитию возбуждения или ослабляет протекающее возбуждение. Примером торможения может быть прекращение рефлекторной реакции, на фоне действия другого более сильного раздражителя.
Первоначально была предложена унитарно-химическая теория торможения. Она основывалась на принципе Дейла: один нейрон - один медиатор. Согласно ей торможение обеспечивается теми же нейронами и синапсами, что и возбуждение. В последующем была доказана правильность бинарно-химической теории. В соответствии с последней, торможение обеспечивается специальными тормозными нейронами, которые являются вставочными. Это клетки Реншоу спинного мозга и нейроны Пуркинье промежуточного. Торможение в ЦНС необходимо для интеграции нейронов в единый нервный центр.
В ЦНС выделяют следующие механизмы торможения:
1. Постсиналтическое. Оно возникает в постсинаптической мембране сомы и дендритов нейронов. Т.е. после передающего синапса На этих участках образуют аксо-дендритные или аксо-соматичесжие синапсы специализированные тормозные нейроны (рис). Эти синапсы являются глицинергическими. В результате воздействия ГЛИ на глициновые хеморецепторы постсинаптической мембраны,
открываются ее калиевые и хлорные каналы. Ионы калия и хлора входят в нейрон, развивается ТПСП. Роль ионов хлора в развитии ТПСП небольшая. В результате возникающей гиперполяризации возбудимость нейрона падает. Проведение нервных импульсов через него прекращается. Алкалоид стрихнин может связываться с глициновыми рецепторами постсинаптической мембраны и выключать тормозные синапсы. Это используется для демонстрации роли торможения. После введения стрихнина у животного развиваются судороги всех мышц.
2. Пресинаптическое торможение. В этом случае тормозной нейрон образует синапс на аксоне нейрона, подходящем к передающему синапсу. Т.е. такой синапс является аксо-аксональным (рис). Медиатором этих синапсов служит ГАМК. Под действием ГАМК активируются хлорные каналы постсинаптической мембраны. Но в этом случае ионы хлора начинают выходите из аксона. Это приводит к небольшой локальной, но длительной деполяризации его мембраны. Значительная часть натриевых каналов мембраны инактивируется, что блокирует проведение нервных импульсов по аксону, а следовательно выделение нейромедиатора в передающем синапсе. Чем ближе тормозной синапс расположен к аксонному холмику, тем сильнее его тормозной эффект. Пресинаптическое торможение наиболее эффективно при обработке информации, так как проведение возбуждения блокируется не во всем нейроне, а только на его одном входе. Другие синапсы, находящиеся на нейроне продолжают функционировать.
3. Пессимальное торможение. Обнаружено Н.Е. Введенским. Возникает при очень высокой частоте нервных импульсов. Развивается стойкая длительная деполяризация всей мембраны нейрона и инактивация ее натриевых каналов. Нейрон становится невозбудимым.
В нейроне одновременно могут возникать и тормозные и возбуждающие постсинаптические потенциалы. За счет этого и происходит выделение нужных сигналов.