- •Кафедра высшей и прикладной математики
- •I программа курса
- •II общие методические указания
- •III основные понятия курса
- •1. Элементы комбинаторики
- •2. Виды событий
- •3. Различные определения вероятности
- •Классическое определение вероятности
- •Статистическое определение вероятности
- •Геометрическое определение вероятности
- •4. Основные теоремы и формулы
- •Д) Исходя из того, что сумма событий состоит в появлении хотя бы одного из событий – слагаемых, в случае большого числа событий имеет смысл пользоваться другой формулой:
- •Формула полной вероятности
- •Формула Бейеса
- •IV. Повторные испытания
- •Формула Пуассона
- •V. Случайные величины и их характеристики
- •1. Понятие о случайных величинах
- •2. Функции распределения
- •Свойства интегральной функции
- •Свойства дифференциальной функции
- •3. Числовые характеристики случайных величин
- •4. Конкретные законы распределения непрерывных случайных величин
- •5. Закон больших чисел
- •VI. Элементы математической статистики
- •1. Характеристики распределения опытных данных
- •2. Линейная корреляция и уравнение линейной регрессии
- •Ііі. Задания для контрольной работы
- •I. Решить задачу
- •V. Непрерывная случайная величина х задана интегральной функцией
- •VII. По сгруппированным данным корреляционной таблицы построить уравнение прямой линии регрессии y на х
- •Приложение 1
- •Приложение 2
- •Продолжение приложения 2
4. Конкретные законы распределения непрерывных случайных величин
Каждый закон распределения определяется плотностью вероятности, интегральной функцией, числовыми характеристиками и вероятностью попадания на интервал.
Закон равномерного
распределения
вероятностей – это такой закон
распределения непрерывной случайной
величины, все значения которой лежат
на отрезке
и имеют постоянную плотность вероятности
на этом отрезке.

,
,
.
.
Нормальное распределение – это распределение вероятностей непрерывной случайной величины, которое описывается дифференциальной функцией
,
,
.
Интегральная функция нормального распределения:
.
,
где
– функция Лапласа (интеграл вероятностей).
Нормальной кривой называют график дифференциальной функции нормального распределения.
Вероятность заданного отклонения
.
|
Правило трех сигм: |
Практически достоверным является событие, состоящее в том, что абсолютная величина отклонения нормально распределенной случайной величины от ее математического ожидания не превосходит утроенного среднего квадратического отклонения |
.
Показательное (экспоненциальное) распределение описывается дифференциальной функцией
.

,
,
.
.
|
Пример 16. |
В
цехе 4 мотора. Для каждого мотора
вероятность того, что он включен в
данный момент, равна 0,6. Составить ряд
распределения числа моторов, включенных
в данный момент. Найти
|
Решение.
Случайная величина
– число включенных
моторов – может принимать значения 0,
1, 2, 3, 4. Для каждого возможного значения
случайной величины найдем вероятность
по формуле Бернулли:
![]()
Составим ряд распределения:
-

0
1
2
3
4

0,0256
0,1536
0,3456
0,3456
0,1296
Проверка: 0,0256 + 0,1536 + 0,3456 + 0,3456 + 0,1296 = 1.
=
.

.
.
|
Пример 17. |
Дана интегральная функция:
Найти: а) дифференциальную функцию; б) вероятность попадания случайной величины в интервал (1/4; 2/3); в) г)
построить график
|
Решение.
а) Найдем дифференциальную функцию:

б)
.
в)
,
,
.
.
г) графики функций
и
имеют вид (рис. 1, 2):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
0 |
|
|
|
1 |
|
|
|
|
|
|
|
0 |
|
|
|
|
1 |
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
Рис. 1 Рис. 2

