
- •Теретическая часть
- •Практическая часть
- •Теоретическая часть
- •Практическая часть
- •Тема: Решение систем линейных уравнений по правилу Гауса. Теоретическая часть
- •Практичская часть
- •Тема: Системы линейных неравенств, графический способ их решения. Теоретическая часть
- •Практическая часть
- •Теоретическая часть
- •Практическая часть
- •Теоретическая часть
- •Практическая часть
- •Теоретическая часть
- •1 Случайные события.
- •2. Классическое определение вероятности
- •4. Геометрическая вероятность
- •Практическая часть
- •Теоретическая часть
- •3. Вычисление вероятностей событий и комбинаторика.
- •Практическая часть
- •Теоретическая часть
- •Практическая часть
4. Геометрическая вероятность
Чтобы преодолеть недостаток классического определения вероятности, состоящий в том, что оно неприменимо к испытаниям с бесконечным числом исходов, вводят геометрические вероятности.
При геометрическом подходе к определению вероятности в качестве пространства Q элементарных событий рассматривается произвольное множество конечной меры[1] на прямой, плоскости или в пространстве.
Событиями называются измеримые всевозможные подмножества множества Q.
В конкретных задачах испытание интерпретируется как случайный выбор точки в некоторой области Q, а событие А — как попадание выбранной точки в некоторую подобласть А области Q. При этом требуется, чтобы все точки области Q имели одинаковую возможность быть выбранными. Это требование обычно выражается словами «наудачу», «случайным образом» и т. Д.
Геометрическая вероятность – вероятность попадания точки в область (отрезок, часть плоскости или пространства).
Приведенные определения являются частными случаями общего определения геометрической вероятности. Обозначим меру (длину, площадь, объем) области через m(е). При этом вероятность попадания точки, брошенной наудачу в область g - часть области G, равна отношению мер областей g и G, соответственно равнее m(g) и m(G).
Формула геометрической вероятности в этом случае имеет вид: P=m(g) : m(G)
В случае классического определения вероятность достоверного (невозможного) события равна единице (нулю); справедливы и обратные утверждения (например, если вероятность события равна нулю, то событие невозможно).
В случае геометрического определения вероятности обратные утверждения не имеют места. Например, вероятность попадания брошенной точки в одну определенную точку области G равна нулю, однако это событие может произойти, и, следовательно, не является невозможным.
Геометрическая вероятность на отрезке.
Пусть отрезок m составляет часть отрезка L. На отрезок L наудачу поставлена точка. Это означает выполнение следующих предположений: поставленная точка может оказаться в любой точке отрезка L, вероятность попадания точки на отрезок m пропорциональна длине этого отрезка и не зависит от его расположения относительно отрезка L. В этих предположениях вероятность попадания точки на отрезок m определяется равенством
Р =( Длина m ) : /Длина L).
Пример. Вычислить геометрические вероятности на отрезке
1. На отрезок ОА длины L числовой оси Ох наудачу поставлена точка В(х). Найти вероятность того, что меньший из отрезков 0В и ВА имеет длину, большую L/3. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения на числовой оси,
Решение. Разобьем отрезок ОА точками С и D на 3 равные части. Требование задачи будет выполнено, если точка В(х) попадет на отрезок CD длины L/3. Искомая вероятность
P=(L/3) : L= l/3.
Практическая часть
-
В ящике имеется 50 одинаковых деталей, из них 5 окрашенных. Наудачу вынимают одну деталь. Найти вероятность того, что извлеченная деталь окажется окрашенной.
-
Брошена игральная кость. Найти вероятность того, что выпадет четное число очков.
-
Участники жеребьевки тянут из ящика жетоны с номерами от 1 др 100. Найти вероятность того, что номер первого наудачу извлеченного жетона не содержит цифры 5.
-
В мешочке имеется 5 одинаковых кубиков. На всех гранях каждого кубика написана одна из следующих букв: о, п, р, с, т. Найти вероятность того, что на вынутых по одному и расположенных «в одну линию» кубиков можно будет прочесть слово «спорт».
-
На каждой из шести одинаковых карточек напечатана одна нз следующих букв: а, т, м, р, с, о. Карточки тщательно перемешаны. Найти вероятность того, что на четырех, вынутых по одной и расположенных «в одну линию» карточках можно будет прочесть слово «трос».
-
Куб, все грани которого окрашены, распилен на тысячу кубиков одинакового размера, которые затем тщательно перемешаны. Найти вероятность того, что наудачу извлеченный кубик, будет иметь окрашенные грани: а) одну; б) две; в) три.
-
Из тщательно перемешанного полного набора 28 костей домино наудачу извлечена кость. Найти вероятность того, что вторую наудачу извлеченную кость можно приставить к первой, если первая кость: а) оказалась дублем; б) не есть дубль.
-
В замке на общей оси пять дисков. Каждый диск разделен на шесть секторов, на которых написаны различные буквы. Замок открывается только в том случае, если каждый диск занимает одно определенное положение относительно корпуса замка. Найти вероятность того, что при произвольной установке дисков замок можно будет открыть.
-
Восемь различных книг расставляются наудачу на одной полке. Найти вероятность того, что две определенные книги окажутся поставленными рядом.
-
Библиотечка состоит нз десяти различных книг, причем пять книг стоят по 4 рубля каждая, три книги — по одному рублю н две книги — по 3 рубля. Найти вероятность того, что взятые наудачу две книги стоят 5 рублей.
-
11.В партии из 100 деталей отдел технического контроля обнаружил 5 нестандартных деталей. Чему равна относительная частота появления нестандартных деталей?
-
12.При стрельбе из винтовки относительная частота попадания в цель оказалась равной 0,85. Найти число попаданий, если всего было произведено 120 выстрелов.
Тема: Вычисление вероятностей с использованием элементов комбинаторики.