Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Part2.doc
Скачиваний:
12
Добавлен:
24.11.2018
Размер:
240.13 Кб
Скачать
      1. Теория сложности. Закон уменьшения отдачи и концепция поддерживающей ёмкости среды

По мере того как размеры и сложность системы увеличивается, пропорционально (но ещё быстрее) увеличивается энергетическая стоимость поддержания структуры и функции системы. При удвоении размеров системы, как правило, более чем вдвое увеличивается количество энергии, которая должна отводится на уменьшение энтропии, связанной с необходимостью сохранения структурной и функциональной сложности.

Таким образом, при увеличении размера и сложности системы проявляется закон уменьшения отдачи, то есть увеличиваются расходы, связанные с масштабами, что объясняется увеличением стоимости откачивания неупорядоченности. Но часть возрастающей платы за сложность компенсируется преимуществами, которые в экономике называют экономией, связанной с масштабами. Метаболизм на единицу массы уменьшается с увеличением массы организма или биомассы леса, так что на единицу потока энергии удаётся поддерживать больше структурных образований.

Добавочные функциональные цепи и петли обратной связи могут увеличить эффективность использования энергии и повторного использования веществ и могут повысить устойчивость или упругость экосистемы по отношению к нарушающим воздействиям. Таким образом, с ростом размера и сложности системы проявляется также и закон увеличения отдачи.

Но какие бы ни были преимущества от возрастания размеров системы, общая энтропия слишком быстро увеличивается с ростом размеров. В результате всё большая и большая доля общего потока энергии должна отклонятся на дыхание, связанное с поддержанием системы, в связи, с чем всё меньшая доля остаётся для нового роста.

Когда расходы энергии на поддержание уравниваются с количеством доступной энергии, дальнейший рост системы прекращается. Количество биомассы, которое может поддерживаться в этих условиях, называется максимальной поддерживающей ёмкостью (способностью) среды.

Рост размеров и сложности популяций, а также целых экосистем обычно идёт по S-образной или сигмоидной кривой согласно логистическому уравнению

,

где К и есть максимальная поддерживающая ёмкость среды, N0 – размер, соответствующий начальному моменту времени t = 0, r – удельная скорость роста.

N

K

I

N0

0 tI t

На этой кривой можно выделить точку I, точку перегиба, где скорость роста максимальна. Уровень I называют оптимальной поддерживающей ёмкостью, так как биомасса будет быстрее всего восстанавливаться на этом уровне.

Поддерживать систему на максимальном уровне К очень сложно, так как вследствие колебаний внешних условий размеры системы могут превысить максимальную поддерживающую ёмкость среды и энтропия будет превосходить способность системы рассеивать её. Это может привести к временному нарушению производительной способности среды и снижению текущего уровня К. То есть при достижении системой уровня максимальной поддерживающей ёмкости среды возможно возникновение сильных колебаний, навязанных внешними условиями, что резко снижает устойчивость и стабильность системы, и даже может привести к её разрушению. Поэтому оптимальным было бы ограничить размеры системы на уровне оптимальной поддерживающей ёмкости среды, составляющей 50% максимальной, что позволит устойчиво существовать системе, несмотря на капризы седы.

Этот подход очень актуален для человечества, потребление которого приблизилось к максимальной производительной способности Земли. Любое сильное стрессовое воздействие, например война, засуха или болезнь, которое сократит урожай хотя бы на год, означает серьёзное недоедание или голод миллионов, еле сводящих концы с концами.

Проявление законов увеличения и уменьшения отдачи при росте размеров удобнее всего проследить на примере системы города. С увеличением размеров города происходит концентрация крупных производств, возрастает зарплата обитателей крупного города, в крупных городах концентрируются культурные и спортивные центры, научные и образовательные центры, что даёт много преимуществ жителям крупных городов. В крупных городах всегда есть возможность удовлетворить практически любой запрос человека, любую его потребность. Однако по мере роста города ухудшается качество жизни, в основном за счет ухудшения качества воздуха и качества окружающей среды. С ростом города возрастают:

  • затраты на поддержание и обслуживание города;

  • расходы на транспорт;

  • массовая безработица в период экономического спада;

  • заболеваемость населения;

  • затраты на отопление и охлаждение;

  • уровень преступности.

Чем больше город, тем больше средств он требует для самоподдержания, причем уровень данных затрат растёт быстрее, чем уровень населения. Для удовлетворения этих затрат приходится повышать налоги, что снижает преимущество больших городов в высоких уровнях доходов. Так, человек, живущий в штате Нью-Йорк, выплачивает в 3 раза большую налоговую сумму, чем живущий в штате Миссисипи. Такова плата за высокую плотность населения и экономические и культурные блага, которые даёт нам город.

Разумный баланс между затратами и выгодами складывается в городе умеренных размеров с населением около 100-200 тыс. человек. Конечно, при определении теоретически оптимальных размеров города надо учитывать много сложных факторов. Кроме того, каждый крупный регион мира должен иметь по крайней мере один очень крупный город, дающий те культурные и образовательные преимущества, которым могут обладать только очень большие города, например, музеи, филармонии, вузы, высококлассные спортивные команды. Гражданам придётся смириться с тем, что крупный центральный город не может сам себя обеспечить и нуждается в дотациях от населения данного региона и всей страны – это будет плата за экономические и культурные блага, предоставляемые им всему региону.

В городах экономические функции максимизированы до такой степени, что не удаётся одновременно максимизировать социальные и экологические аспекты человеческого существования.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]