
- •Оглавление
- •1. Общие вопросы выполнения релейной защиты электроэнергетических систем 6
- •2. Трансформаторы тока и схемы их соединений 13
- •3. Реле 25
- •4. Максимальная токовая защита 32
- •4.4.3. Схема защиты 54
- •5. Токовые отсечки 62
- •5.1. Принцип действия 62
- •6. Измерительные трансформаторы напряжения 70
- •6.1. Принцип действия 70
- •7. Токовая направленная защита 78
- •7.6.2. Выдержка времени защиты 99
- •1. Общие вопросы выполнения релейной защиты электроэнергетических систем
- •1.1. Назначение релейной защиты
- •1.2. Требования к релейной защите
- •1.3. Изображение схем релейной защиты на чертежах
- •1.4. Элементы защиты
- •1.5. Принципы выполнения устройств релейной защиты
- •1.6. Источники оперативного тока
- •2. Трансформаторы тока и схемы их соединений
- •2.1. Принцип действия
- •2.2. Параметры, влияющие на уменьшение намагничивающего тока
- •2.3. Выбор трансформаторов тока и допустимой вторичной нагрузки
- •2.4. Типовые схемы соединений трансформаторов тока
- •2.4.1. Соединение трансформаторов тока и обмоток реле в полную звезду
- •2.4.2. Соединение трансформаторов тока и обмоток реле в неполную звезду
- •2.4.3. Соединение трансформаторов тока в треугольник, а обмоток реле в звезду
- •2.4.4. Включение реле на разность токов 2 – фаз (схема восьмерки)
- •3.1. Электромагнитные реле тока и напряжения
- •3.1.1. Принцип действия
- •3.1.2. Работа электромагнитного реле на переменном токе
- •3.2. Разновидности электромагнитных реле
- •3.2.1. Токовые реле
- •3.2.2. Реле напряжения
- •3.2.3. Промежуточные реле
- •3.2.4. Указательные реле
- •3.2.5. Реле времени
- •4. Максимальная токовая защита
- •4.1. Принцип действия токовых защит
- •4.2. Защита линий с помощью мтз с независимой выдержкой времени
- •4.2.1. Схемы защиты
- •4.2.1.1. Трехфазная схема защиты на постоянном оперативном токе
- •4.2.1.2. Двухфазные схемы защиты на постоянном оперативном токе
- •4.2.1.2.1. Двухрелейная схема
- •4.2.1.2.2. Одно-релейная схема
- •4.2.2. Выбор тока срабатывания защиты
- •4.2.3. Чувствительность защиты
- •4.2.4. Выдержка времени защиты
- •4.3. Мтз с пуском (блокировкой) от реле минимального напряжения
- •4.3.1. Схема защиты
- •4.3.2. Ток срабатывания токовых реле
- •4.3.3. Напряжение срабатывания реле минимального напряжения
- •4.3.4. Чувствительность реле напряжения
- •4.4.2. Индукционные реле
- •4.4.2.1. Принцип действия индукционных реле
- •4.4.2.2. Индукционное реле с короткозамкнутыми витками
- •4.4.2.3. Токовое индукционное реле серии рт–80 и рт–90
- •4.4.3. Схема защиты
- •4.4.4. Выдержки времени защит
- •4.5. Мтз на переменном оперативном токе
- •4.5.1. Схема с дешунтированием катушки отключения выключателей
- •4.5.1.1. Схема защиты с зависимой характеристикой
- •4.5.1.2. Схема защиты с независимой характеристикой
- •4.5.2. Схемы с питанием оперативных цепей защиты от блоков питания
- •4.5.3. Схема защиты с использованием энергии заряженного конденсатора
- •4.6. Поведение мтз при двойных замыканиях на землю
- •4.7. Область применения мтз
- •5. Токовые отсечки
- •5.1. Принцип действия
- •5.2. Схемы отсечек
- •5.3. Отсечки мгновенного действия на линиях с односторонним питанием
- •5.3.1. Ток срабатывания отсечки
- •5.3.2. Зона действия отсечки
- •5.3.3. Время действия отсечки
- •5.4. Неселективные отсечки
- •5.5. Отсечки на линиях с двусторонним питанием
- •6. Измерительные трансформаторы напряжения
- •6.1. Принцип действия
- •6.2. Погрешности трансформаторов напряжения
- •6.3. Схемы соединений трансформаторов напряжения
- •6.3.1. Схема соединения трансформаторов напряжения в звезду
- •6.3.2. Схема соединения обмоток трансформаторов напряжения в открытый треугольник
- •6.3.3. Схема соединения трансформаторов напряжения в разомкнутый треугольник
- •6.4. Контроль за исправностью цепей напряжения
- •7. Токовая направленная защита
- •7.1. Необходимость токовой направленной защиты
- •7.2. Индукционные реле направления мощности
- •7.2.1. Общие сведения
- •7.2.2. Конструкция и принцип действия
- •7.2.3. Типы реле мощности
- •7.2.4. Характеристики реле мощности
- •7.4. Схемы включения реле направления мощности
- •7.4.1. Требования к схемам включения
- •7.4.2. 90 И 30 схемы
- •7.4.3. Работа реле, включенных по 90 и 30 схемам
- •7.5. Блокировка максимальной направленной защиты при замыканиях на землю
- •7.6. Выбор уставок защиты
- •7.6.1. Ток срабатывания пусковых реле
- •7.6.2. Выдержка времени защиты
- •7.6.3. Мертвая зона
- •7.7. Токовые направленные отсечки
- •7.9. Оценка токовых направленных защит
- •Литература
7. Токовая направленная защита
7.1. Необходимость токовой направленной защиты
Направленной называется защита, действующая только при определенном направлении мощности КЗ. Необходимость токовой направленной защиты (ТНЗ) возникает в сетях с двусторонним питанием (рис. 7.1.1):
Рис. 7.1.1
При КЗ в точках К1 и К2 через защиту 5 проходит ток IК1, IК2 в различных направлениях (рис. 7.1.2)
Рис. 7.1.2
При КЗ в точке К1 мощность направлена от шин в линию, а при КЗ в точке К2 мощность направлена от линии к шинам. Направление мощности КЗ, проходящей по линии, характеризует, где возникло повреждение: на защищаемой линии или на других присоединениях, отходящих от шин данной подстанции.
Простая токовая защита действует как при КЗ на защищаемой линии, так и при КЗ на других присоединениях, отходящих от шин подстанции, поэтому добиться селективной работы при КЗ в сетях с двусторонним питанием от МТЗ, как правило, невозможно.
При
КЗ в точке К1 t5<t6 одновременно
выполнить оба
При КЗ в точке К2 t5>t6 требования невозможно
Принципы выполнения селективной защиты в сетях с двусторонним питанием
1. Защита должна устанавливаться с обеих сторон каждой линии и действовать при направлении мощности от шин в линию.
2. Выдержки времени на защитах, работающих при одном направлении мощности (от G1 или G2), должны согласовываться между собой по ступенчатому принципу, нарастая по направлению к источнику питания:
t2>t4>t6>t8; t1<t3<t5<t7.
В схемы ТНЗ входят реле направления мощности, ниже подробно рассмотрены реле данного типа.
7.2. Индукционные реле направления мощности
7.2.1. Общие сведения
Реле
направления мощности используется в
схемах защит как орган, определяющий
по направлению мощности, где произошло
повреждение на защищаемой линии (К1)
или на других присоединениях, отходящих
от шин подстанции (К2)
(рис. 7.2.1).
Рис. 7.2.1
Реле
мощности имеет две обмотки (рис. 7.2.2).
Взаимодействие токов, проходящих по
обмоткам, создает электромагнитный
момент, значение и знак которого зависят
от напряжения (UP)
и тока (IP)
подведенного к зажимам реле и угла Р
между ними.
Реле мощности должны обладать высокой чувствительностью и низкой мощностью срабатывания, так как при КЗ напряжение UP уменьшается, следовательно, мощность, подводимая к реле, при этом очень мала.
Рис. 7.2.2
Мощность срабатывания SCP – мощность, при которой реле замыкает свои контакты.
7.2.2. Конструкция и принцип действия
Принципиальная схема индукционного реле направления мощности представлена на рис. 7.2.3.
Подвижная система реле выполнена в виде цилиндрического ротора, на него действуют два магнитных потока:
ФН – поляризующий магнитный поток;
ФТ – рабочий поток.
Рис. 7.2.3
На рисунке:
IН=UP/ZН – ток, протекающий по поляризующей обмотке; (7.1)
– угол внутреннего сдвига реле, определяется индуктивным и активным сопротивлениями поляризующей обмотки;
Р – угол сдвига по фазе между током и напряжением, подведенными к обмоткам реле, зависит от внешних параметров сети;
– угол между
токами, протекающими по обмоткам
реле, =–Р
. (7.2)
Взаимодействие вихревых токов цилиндрического ротора с магнитными потоками создает электромагнитный момент МЭ:
МЭ=kФНФТsin, (7.3)
ФНIНUP, ФТIP, =–Р,
МЭ=k1UPIPsin(–Р)=k1SP, (7.4)
где SP= UPIPsin(–Р) – мощность, подведенная к реле.
Электромагнитный момент МЭ положителен, когда =–Р – в пределах от 0 до 180. Момент МЭ отрицателен, когда –от 180 до 360. При –Р=90 – МЭ максимален. Угол , при котором МЭ максимален, обозначается М.Ч. – угол максимальной чувствительности,
М.Ч.=–90. (7.5)