
- •Оглавление
- •1. Общие вопросы выполнения релейной защиты электроэнергетических систем 6
- •2. Трансформаторы тока и схемы их соединений 13
- •3. Реле 25
- •4. Максимальная токовая защита 32
- •4.4.3. Схема защиты 54
- •5. Токовые отсечки 62
- •5.1. Принцип действия 62
- •6. Измерительные трансформаторы напряжения 70
- •6.1. Принцип действия 70
- •7. Токовая направленная защита 78
- •7.6.2. Выдержка времени защиты 99
- •1. Общие вопросы выполнения релейной защиты электроэнергетических систем
- •1.1. Назначение релейной защиты
- •1.2. Требования к релейной защите
- •1.3. Изображение схем релейной защиты на чертежах
- •1.4. Элементы защиты
- •1.5. Принципы выполнения устройств релейной защиты
- •1.6. Источники оперативного тока
- •2. Трансформаторы тока и схемы их соединений
- •2.1. Принцип действия
- •2.2. Параметры, влияющие на уменьшение намагничивающего тока
- •2.3. Выбор трансформаторов тока и допустимой вторичной нагрузки
- •2.4. Типовые схемы соединений трансформаторов тока
- •2.4.1. Соединение трансформаторов тока и обмоток реле в полную звезду
- •2.4.2. Соединение трансформаторов тока и обмоток реле в неполную звезду
- •2.4.3. Соединение трансформаторов тока в треугольник, а обмоток реле в звезду
- •2.4.4. Включение реле на разность токов 2 – фаз (схема восьмерки)
- •3.1. Электромагнитные реле тока и напряжения
- •3.1.1. Принцип действия
- •3.1.2. Работа электромагнитного реле на переменном токе
- •3.2. Разновидности электромагнитных реле
- •3.2.1. Токовые реле
- •3.2.2. Реле напряжения
- •3.2.3. Промежуточные реле
- •3.2.4. Указательные реле
- •3.2.5. Реле времени
- •4. Максимальная токовая защита
- •4.1. Принцип действия токовых защит
- •4.2. Защита линий с помощью мтз с независимой выдержкой времени
- •4.2.1. Схемы защиты
- •4.2.1.1. Трехфазная схема защиты на постоянном оперативном токе
- •4.2.1.2. Двухфазные схемы защиты на постоянном оперативном токе
- •4.2.1.2.1. Двухрелейная схема
- •4.2.1.2.2. Одно-релейная схема
- •4.2.2. Выбор тока срабатывания защиты
- •4.2.3. Чувствительность защиты
- •4.2.4. Выдержка времени защиты
- •4.3. Мтз с пуском (блокировкой) от реле минимального напряжения
- •4.3.1. Схема защиты
- •4.3.2. Ток срабатывания токовых реле
- •4.3.3. Напряжение срабатывания реле минимального напряжения
- •4.3.4. Чувствительность реле напряжения
- •4.4.2. Индукционные реле
- •4.4.2.1. Принцип действия индукционных реле
- •4.4.2.2. Индукционное реле с короткозамкнутыми витками
- •4.4.2.3. Токовое индукционное реле серии рт–80 и рт–90
- •4.4.3. Схема защиты
- •4.4.4. Выдержки времени защит
- •4.5. Мтз на переменном оперативном токе
- •4.5.1. Схема с дешунтированием катушки отключения выключателей
- •4.5.1.1. Схема защиты с зависимой характеристикой
- •4.5.1.2. Схема защиты с независимой характеристикой
- •4.5.2. Схемы с питанием оперативных цепей защиты от блоков питания
- •4.5.3. Схема защиты с использованием энергии заряженного конденсатора
- •4.6. Поведение мтз при двойных замыканиях на землю
- •4.7. Область применения мтз
- •5. Токовые отсечки
- •5.1. Принцип действия
- •5.2. Схемы отсечек
- •5.3. Отсечки мгновенного действия на линиях с односторонним питанием
- •5.3.1. Ток срабатывания отсечки
- •5.3.2. Зона действия отсечки
- •5.3.3. Время действия отсечки
- •5.4. Неселективные отсечки
- •5.5. Отсечки на линиях с двусторонним питанием
- •6. Измерительные трансформаторы напряжения
- •6.1. Принцип действия
- •6.2. Погрешности трансформаторов напряжения
- •6.3. Схемы соединений трансформаторов напряжения
- •6.3.1. Схема соединения трансформаторов напряжения в звезду
- •6.3.2. Схема соединения обмоток трансформаторов напряжения в открытый треугольник
- •6.3.3. Схема соединения трансформаторов напряжения в разомкнутый треугольник
- •6.4. Контроль за исправностью цепей напряжения
- •7. Токовая направленная защита
- •7.1. Необходимость токовой направленной защиты
- •7.2. Индукционные реле направления мощности
- •7.2.1. Общие сведения
- •7.2.2. Конструкция и принцип действия
- •7.2.3. Типы реле мощности
- •7.2.4. Характеристики реле мощности
- •7.4. Схемы включения реле направления мощности
- •7.4.1. Требования к схемам включения
- •7.4.2. 90 И 30 схемы
- •7.4.3. Работа реле, включенных по 90 и 30 схемам
- •7.5. Блокировка максимальной направленной защиты при замыканиях на землю
- •7.6. Выбор уставок защиты
- •7.6.1. Ток срабатывания пусковых реле
- •7.6.2. Выдержка времени защиты
- •7.6.3. Мертвая зона
- •7.7. Токовые направленные отсечки
- •7.9. Оценка токовых направленных защит
- •Литература
4.2.1.2.1. Двухрелейная схема
Рис. 4.2.3
Рис. 4.2.3 (продолжение)
Достоинства
1. Схема реагирует на все междуфазные КЗ на линиях.
2. Экономичнее трехфазной схемы.
Недостатки
Меньшая чувствительность при 2 – фазных КЗ за трансформатором с соединением обмоток Y/–11 гр. (В два раза меньше чем у трехфазной схемы).
Рис. 4.2.4
При необходимости чувствительность можно повысить, установив третье токовое реле в общем проводе токовых цепей. Чувствительность повышается в два раза – схема становиться равноценной по чувствительности с трехфазной.
Схемы широко применяются в сетях с изолированной нейтралью, где возможны только междуфазные КЗ. двухфазные схемы применяются в качестве защиты от междуфазных КЗ и в сетях с глухозаземленной нейтралью, при этом для защиты от однофазных КЗ устанавливается дополнительная защита, реагирующая на ток нулевой последовательности.
4.2.1.2.2. Одно-релейная схема
Рис. 4.2.5
Схема реагирует на все случаи междуфазных КЗ.
Достоинства
Только одно токовое реле.
Недостатки
1. Меньшая чувствительность по сравнению с 2 – релейной схемой при КЗ между фазами АВ и ВС.
2. Недействие защиты при одном из трех возможных случаев 2 – фазных КЗ за трансформатором с соединением обмоток Y/–11 гр.
Рис. 4.2.6
3. Более низкая надежность – при неисправности единственного токового реле происходит отказ защиты.
Схема применяется в распределительных сетях 6...10 кВ и для защиты электродвигателей.
4.2.2. Выбор тока срабатывания защиты
Защита должна надежно срабатывать при повреждениях, но не должна действовать при максимальных токах нагрузки и её кратковременных толчках (например, запуск двигателей).
-
Слишком чувствительная защита может привести к неоправданным отключениям.
-
Главная задача при выборе тока срабатывания состоит в надежной отстройке защиты от токов нагрузки.
Существуют два условия определения тока срабатывания защиты.
Первое условие. Токовые реле не должны приходить в действие от тока нагрузки:
Iс.з>Iн.макс, (4.1)
где Iс.з – ток срабатывания защиты (наименьший первичный ток в фазе линии, необходимый для действия защиты);
Iн.макс – максимальный рабочий ток нагрузки.
Второе условие. Токовые реле, сработавшие при КЗ в сети, должны надёжно возвращаться в исходное положение после отключения КЗ при оставшемся в защищаемой линии рабочем токе.
При КЗ приходят в действие реле защит I и II (рис.4.2.1). После отключения КЗ защитой I прохождение тока КЗ прекращается и токовые реле защиты II должны вернуться в исходное положение.
Ток возврата реле должен быть больше тока нагрузки линии, проходящего через защиту II после отключения КЗ. И этот ток в первые моменты времени после отключения КЗ имеет повышенное значение из–за пусковых токов электродвигателей, которые при КЗ тормозятся вследствие понижения (при КЗ) напряжения:
Рис. 4.2.7
Iвоз>kзIн.макс . (4.2)
Увеличение Iн.макс, вызванное самозапуском двигателей, оценивается коэффициентом запуска kз.
-
Учет самозапуска двигателей является обязательным.
При выполнении условия (4.2) выполняется и условие (4.1), так как Iвоз<Iс.з. Поэтому для отстройки защиты от нагрузки за исходное принимается условие (4.2):
Iвоз=kнkзIн.макс, (4.3)
где kн – коэффициент надежности, учитывающий возможную погрешность в величине тока возврата реле, kн=1,1...1,2.
Ток срабатывания защиты находят из соотношения
. (4.4)
Вторичный ток срабатывания реле находится с учетом коэффициентов трансформации измерительных трансформаторов тока nт и схемы включения реле kсх:
. (4.5)
Ток срабатывания защиты зависит от коэффициента возврата, для снижения Iс.з необходимо увеличивать kвоз, он должен быть на уровне от 0,85 и выше.
Определение величины Iн.макс индивидуально для конкретного защищаемого объекта, ниже приведены два примера
1. Параллельные линии: Iн.макс=Iнагр.
Рис. 4.2.8
2. Линии, питающие потребителя: Iн.макс=I1+I2.
Рис. 4.2.9