
- •Механика
- •Механика
- •Оглавление
- •Предисловие
- •Введение
- •Глава 1. Кинематика
- •Механическое движение
- •1.2. Некоторые сведения о векторах
- •1.3. Скорость
- •1.4. Ускорение
- •1.5. Угловая скорость и угловое ускорение
- •Глава 2. Динамика материальной точки
- •2.1. Первый закон Ньютона. Инерциальные системы отсчета
- •2.2. Второй закон Ньютона
- •2.3. Третий закон Ньютона
- •2.4. Сила. Силы трения
- •2.5. Импульс. Закон сохранения импульса
- •2.6. Центр масс. Движение тела переменной массы
- •Глава 3. Работа и энергия
- •3.1. Понятие о работе и энергии. Мощность. Консервативные
- •Кинетическая энергия
- •Потенциальная энергия
- •Закон сохранения механической энергии
- •Графическое представление энергии.
- •3.6. Применение законов сохранения энергии и импульса
- •Используя (3.32), получаем
- •Движение в центральном поле сил
- •Глава 4. Механика твердого тела
- •4.1. Движение твердого тела
- •4.2. Момент силы
- •4.3. Центр масс твердого тела и его движение
- •4.4. Момент импульса и закон его сохранения
- •4.5. Основное уравнение динамики вращательного движения
- •4.6. Момент инерции
- •4.7. Кинетическая энергия твердого тела
- •4.7.1. Вращение тела вокруг неподвижной оси
- •4.7.2. Работа внешних сил при вращении твердого тела
- •4.7.3. Кинетическая энергия тела при плоском движении
- •Глава 5. Тяготение. Неинерциальные системы
- •5.1. Развитие представлений о природе тяготения
- •5.2. Законы Кеплера. Закон всемирного тяготения
- •5.3. Гравитационное поле и его характеристики
- •5.4. Сила тяжести и вес. Невесомость
- •5.5. Космические скорости
- •5.6. Неинерциальные системы отсчета. Силы инерции
- •5.6.1. Силы инерции при ускоренном поступательном
- •5.6.2. Центробежная сила инерции
- •5.6.3. Сила Кориолиса
- •Глава 6. Элементы механики сплошных сред
- •6.1. Гидроаэростатика
- •6.1.1. Давление
- •6.1.2. Распределение давления в покоящихся жидкости и газе
- •6.1.3. Выталкивающая сила
- •6.2. Гидроаэродинамика
- •6.2.1. Линии и трубки тока. Неразрывность струи
- •6.2.2. Уравнение Бернулли
- •6.2.3. Измерение давления в текущей жидкости
- •6.2.4. Применение к движению жидкости закона сохранения
- •6.2.5. Силы внутреннего трения
- •6.2.6. Ламинарное и турбулентное течение
- •6.2.7. Движение тел в жидкостях и газах
- •6.2.8. Подъемная сила
- •Глава 7. Элементы специальной теории
- •7.1. Принцип относительности Галилея.
- •7.2. Постулаты специальной теории относительности
- •7.3. Преобразования Лоренца
- •7.4. Следствия из преобразований Лоренца
- •7.4.1. Одновременность событий в разных системах отсчета
- •7.4.2. Длительность событий в разных системах отсчета
- •7.4.3. Длина тел в разных системах отсчета
- •7.4.4. Релятивистский закон сложения скоростей
- •7.5. Интервал между событиями
- •7.6. Релятивистская динамика. Релятивистский импульс
- •7.7. Закон взаимосвязи массы и энергии
- •7.7.1. Кинетическая энергия релятивистской частицы
- •7.7.2. Закон взаимосвязи массы и энергии
- •7.7.3. Связь между энергией и импульсом частицы
- •Глава 8. Свободные гармонические колебания
- •8.1. Гармонические колебания и их характеристика
- •8.2. Механические гармонические колебания
- •8.3. Гармонический осциллятор. Пружинный, математический
- •8.4. Графическое изображение гармонических колебаний.
- •8.5. Сложение колебаний одинакового направления
- •8.6. Сложение взаимно перпендикулярных колебаний
- •Глава 9. Свободные Затухающие колебания
- •9.1. Дифференциальное уравнение свободных затухающих
- •9.2. Основные характеристики затухающих колебаний
- •Глава 10. Вынужденные колебания
- •10.1. Дифференциальное уравнение вынужденных колебаний
- •10.2. Решение дифференциального уравнения вынужденных
- •10.3. Резонанс. Примеры резонансных явлений
- •Глава 11. Волны в упругой среде
- •11.1. Упругие волны
- •11.2. Уравнение плоской и сферической волн
- •11.3. Уравнение плоской волны, распространяющейся
- •11.4. Волновое уравнение
- •11.5. Скорость распространения упругих волн
- •11.6. Энергия упругой волны
- •11.6.1. Плотность энергии упругой волны
- •11.6.2. Плотность потока энергии
- •11.7. Стоячие волны
- •11.7.1. Уравнение стоячей волны
- •11.7.2. Энергия стоячей волны
- •11.8. Эффект Доплера для звуковых волн
- •Литература
- •Механика
- •302020, Г. Орел, Наугорское шоссе, 29.
7.4.4. Релятивистский закон сложения скоростей
Рассмотрим движение материальной точки в системе К/ со скоростью u/, которая в свою очередь движется относительно системы К со скоростью v. Определим скорость точки u в системе К. В системе К движение точки в каждый момент времени t определяется координатами x, y, z, а в системе К/ в момент времени t/ – координатами x/, y/, z/. Проекции векторов скорости точки на оси координат равны
,
,
,
,
.
(7.15)
Согласно преобразованиям Лоренца
,
,
,
.
(7.16)
Используя (7.15) и (7.16), можно получить релятивистский закон сложения скоростей специальной теории относительности:
(7.17)
Если
материальная точка движется параллельно
оси x,
то скорость u
относительно системы К
совпадает с ux,
а скорость u/
относительно К/
– c
.
Тогда закон сложения скоростей примет
вид:
,
.
(7.18)
Если скорости v, u/ и u малы по сравнению со скоростью света, то формулы (7.17) переходят в закон сложения скоростей классической механики.
Релятивистский закон сложения скоростей подчиняется второму постулату Эйнштейна:
.
Если
складываемые скорости близки к скорости
света, то результирующая скорость всегда
будет меньше или равна скорости света.
Рассмотрим предельный случай
.
После подстановки в (7.18) получим
,
таким образом, при сложении любых
скоростей результат не может превысить
скорость света в вакууме.
7.5. Интервал между событиями
Каждое событие можно охарактеризовать четырьмя числами: координатами места, где оно произошло (x, y, z) временем t, когда оно произошло. Введем воображаемое четырехмерное пространство, на координатных осях которого будем откладывать пространственные координаты и время. В этом пространстве событие изобразится точкой, которую называют мировой точкой. Любой частице (даже неподвижной) соответствует в четырехмерном пространстве линия, называемая мировой линией (для покоящейся точки это прямая, параллельная оси t). Пусть два события имеют координаты x1, y1, z1, t1 и x2, y2, z2, t2 соответственно. Величину
(7.19)
называют интервалом между событиями. Введя расстояние
(7.20)
между
точками обычного трехмерного пространства,
в которых произошли события, и, обозначив
,
формулу интервала можно записать в виде
.
(7.21)
Покажем,
что интервал между двумя событиями
одинаков во всех инерциальных системах
отсчета. Обозначив
,
,
,
,
выражение (7.19) можно записать в виде
.
Интервал между теми же событиями в системе К/ равен
.
(7.22)
Используем преобразования Лоренца
,
,
,
.
Подставив эти значения в (7.22) и сделав преобразования, по-лучим
,
т.е.
.
Таким образом, интервал, определяя пространственно-временные соотношения между событиями, является инвариантом при переходе от одной инерциальной системы отсчета к другой. Инвариантность интервала означает, что, несмотря на относительность длин и промежутков времени, течение событий носит объективный характер и не зависит от системы отсчета.
Кроме того, инвариантность интервала между двумя событиями свидетельствует о том, что пространство и время органически связаны между собой и образуют единую форму существования материи – пространство-время. Пространство и время не существуют вне материи и независимо от нее.