
- •Механика
- •Механика
- •Оглавление
- •Предисловие
- •Введение
- •Глава 1. Кинематика
- •Механическое движение
- •1.2. Некоторые сведения о векторах
- •1.3. Скорость
- •1.4. Ускорение
- •1.5. Угловая скорость и угловое ускорение
- •Глава 2. Динамика материальной точки
- •2.1. Первый закон Ньютона. Инерциальные системы отсчета
- •2.2. Второй закон Ньютона
- •2.3. Третий закон Ньютона
- •2.4. Сила. Силы трения
- •2.5. Импульс. Закон сохранения импульса
- •2.6. Центр масс. Движение тела переменной массы
- •Глава 3. Работа и энергия
- •3.1. Понятие о работе и энергии. Мощность. Консервативные
- •Кинетическая энергия
- •Потенциальная энергия
- •Закон сохранения механической энергии
- •Графическое представление энергии.
- •3.6. Применение законов сохранения энергии и импульса
- •Используя (3.32), получаем
- •Движение в центральном поле сил
- •Глава 4. Механика твердого тела
- •4.1. Движение твердого тела
- •4.2. Момент силы
- •4.3. Центр масс твердого тела и его движение
- •4.4. Момент импульса и закон его сохранения
- •4.5. Основное уравнение динамики вращательного движения
- •4.6. Момент инерции
- •4.7. Кинетическая энергия твердого тела
- •4.7.1. Вращение тела вокруг неподвижной оси
- •4.7.2. Работа внешних сил при вращении твердого тела
- •4.7.3. Кинетическая энергия тела при плоском движении
- •Глава 5. Тяготение. Неинерциальные системы
- •5.1. Развитие представлений о природе тяготения
- •5.2. Законы Кеплера. Закон всемирного тяготения
- •5.3. Гравитационное поле и его характеристики
- •5.4. Сила тяжести и вес. Невесомость
- •5.5. Космические скорости
- •5.6. Неинерциальные системы отсчета. Силы инерции
- •5.6.1. Силы инерции при ускоренном поступательном
- •5.6.2. Центробежная сила инерции
- •5.6.3. Сила Кориолиса
- •Глава 6. Элементы механики сплошных сред
- •6.1. Гидроаэростатика
- •6.1.1. Давление
- •6.1.2. Распределение давления в покоящихся жидкости и газе
- •6.1.3. Выталкивающая сила
- •6.2. Гидроаэродинамика
- •6.2.1. Линии и трубки тока. Неразрывность струи
- •6.2.2. Уравнение Бернулли
- •6.2.3. Измерение давления в текущей жидкости
- •6.2.4. Применение к движению жидкости закона сохранения
- •6.2.5. Силы внутреннего трения
- •6.2.6. Ламинарное и турбулентное течение
- •6.2.7. Движение тел в жидкостях и газах
- •6.2.8. Подъемная сила
- •Глава 7. Элементы специальной теории
- •7.1. Принцип относительности Галилея.
- •7.2. Постулаты специальной теории относительности
- •7.3. Преобразования Лоренца
- •7.4. Следствия из преобразований Лоренца
- •7.4.1. Одновременность событий в разных системах отсчета
- •7.4.2. Длительность событий в разных системах отсчета
- •7.4.3. Длина тел в разных системах отсчета
- •7.4.4. Релятивистский закон сложения скоростей
- •7.5. Интервал между событиями
- •7.6. Релятивистская динамика. Релятивистский импульс
- •7.7. Закон взаимосвязи массы и энергии
- •7.7.1. Кинетическая энергия релятивистской частицы
- •7.7.2. Закон взаимосвязи массы и энергии
- •7.7.3. Связь между энергией и импульсом частицы
- •Глава 8. Свободные гармонические колебания
- •8.1. Гармонические колебания и их характеристика
- •8.2. Механические гармонические колебания
- •8.3. Гармонический осциллятор. Пружинный, математический
- •8.4. Графическое изображение гармонических колебаний.
- •8.5. Сложение колебаний одинакового направления
- •8.6. Сложение взаимно перпендикулярных колебаний
- •Глава 9. Свободные Затухающие колебания
- •9.1. Дифференциальное уравнение свободных затухающих
- •9.2. Основные характеристики затухающих колебаний
- •Глава 10. Вынужденные колебания
- •10.1. Дифференциальное уравнение вынужденных колебаний
- •10.2. Решение дифференциального уравнения вынужденных
- •10.3. Резонанс. Примеры резонансных явлений
- •Глава 11. Волны в упругой среде
- •11.1. Упругие волны
- •11.2. Уравнение плоской и сферической волн
- •11.3. Уравнение плоской волны, распространяющейся
- •11.4. Волновое уравнение
- •11.5. Скорость распространения упругих волн
- •11.6. Энергия упругой волны
- •11.6.1. Плотность энергии упругой волны
- •11.6.2. Плотность потока энергии
- •11.7. Стоячие волны
- •11.7.1. Уравнение стоячей волны
- •11.7.2. Энергия стоячей волны
- •11.8. Эффект Доплера для звуковых волн
- •Литература
- •Механика
- •302020, Г. Орел, Наугорское шоссе, 29.
6.2.6. Ламинарное и турбулентное течение
Наблюдается два вида течения жидкости (или газа). В одних случаях жидкость как бы разделяется на слои, которые скользят друг относительно друга, не перемешиваясь. Такое течение называется ламинарным (слоистым). Если в ламинарный поток ввести подкрашенную струйку, то она сохраняется, не размываясь, на всей длине потока, так как частицы жидкости в ламинарном потоке не переходят из одного слоя в другой. Ламинарное течение стационарно.
При увеличении скорости или поперечных размеров потока характер течения существенным образом изменяется. Возникает энергичное перемешивание жидкости. Такое течение называется турбулентным. При турбулентном течении скорость частиц в каждом данном месте все время изменяется беспорядочным образом — течение нестационарно. Если в турбулентный поток ввести окрашенную струйку, то уже на небольшом расстоянии от места ее введения окрашенная жидкость равномерно распределяется по всему сечению потока.
Показанный на рис. 6.18а характер изменения скорости течения с расстоянием от оси трубы относится к случаю ламинарного течения. Таким образом, при ламинарном течении скорость изменяется с расстоянием от оси трубы по параболическому закону.
− а − б
Рис. 6.18. Ламинарное и турбулентное течения жидкости:
а - ламинарное, б - турбулентное
При турбулентном течении можно говорить о среднем (по времени) значении скорости в каждой точке сечения трубы. “Профиль” средних скоростей при турбулентном течении изображен на рис. 6.18б. Вблизи стенок трубы скорость изменяется гораздо сильнее, чем при ламинарном течении, но в остальной части сечения скорость изменяется меньше.
Английский ученый Рейнольдс установил, что характер течения зависит от значения безразмерной величины:
=
,
(6.23)
где ρ − плотность жидкости (или газа); ν − средняя (по сечению трубы) скорость потока; η — коэффициент вязкости жидкости; ℓ — характерный для поперечного сечения размер, например, сторона квадрата при квадратном сечении, радиус или диаметр при круглом сечении и т.п.
Величина
(6.23) называется числом Рейнольдса. При
малых значениях числа Рейнольдса
наблюдается ламинарное течение. Начиная
с некоторого определенного значения
Re, называемого критическим, течение
приобретает турбулентный характер.
Если в качестве характерного размера
для круглой трубы взять ее радиус, r
то критическое значение числа Рейнольдса
(которое в этом случае имеет вид
=
)
оказывается равным примерно 1000. В число
Рейнольдса входят в виде отношения две
величины, зависящие от свойств жидкости:
плотность
и
коэффициент вязкости
.
Отношение
(6.24)
называется
кинематической
вязкостью.
В отличие от
величина
называется динамической
вязкостью.
Используя кинематическую вязкость,
числу Рейнольдса можно придать следующий
вид:
Число
Рейнольдса может служить критерием
подобия для течения жидкостей в трубах,
каналах и т.д. Характер течения различных
жидкостей (или газов) в трубах разных
сечений будет совершенно одинаков, если
каждому течению соответствует одно и
то же значе-ние
.