Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Общий осмотр кардиологических больных.docx
Скачиваний:
26
Добавлен:
22.11.2018
Размер:
1.32 Mб
Скачать

Синдром нарушения артериального периферического кровообращения

Причиной острой артериальной недостаточности чаще всего являются тромбозы или эмболии, хроническая артериальная недостаточность (ХАН) - результат атеросклероза, облитерирующего эндартериита у курильщиков, узелкового периартериита и др.

Жалобы: Острые ишемические боли в конечностях при тромбэмболиях артерий, при хронической артериальной недостаточности боли в икроножных мышцах при ходьбе, иногда судороги, вынуждающие больного остановиться (симптом «перемежающейся хромоты»); чувство онемения, ползания мурашек, зябкость, повышенная чувствительность к холоду.

Осмотр и пальпация. Кожа пораженных конечностей бледная, холодная наощупь, трофические расстройства (выпадение волос, шелушение, сухость, утолщение, слоистость ногтей). При развитии асептической гангрены кожа становится синюшной, затем черного цвета. Пульс на периферических артериях (a. poplitea, a. tibialis posterior, a. dorsalis pedis) слабый или отсутствует. При реовазографии артериальные асцилляции резко снижены.

Синдром нарушения венозного оттока

Наиболее частые причины: варикозное расширение вен нижних конечностей с последующим тромбофлебитом поверхностных или глубоких вен; флеботромбозы.

Жалобы: чувство тяжести, распирания в областей голеней, особенно при длительном пребывании в вертикальном положении, отеки нижних конечностей.

Осмотр: местный отек конечности ниже венозного блока (тромбоза), кожа цианотичная с трофическими расстройствами. Можно выявить варикозно расширенные вены с тромбированными узлами. При длительном течении могут образовываться трофические язвы, длительно не заживающие.

Пальпация: выявляются плотные отеки.

Синдром нарушения лимфатического оттока

Жалобы: чувство тяжести, распирания, увеличение объема пораженной конечности. Осмотр: конечность утолщена, отечность, «слоновость». Цвет кожи обычный, температура нормальная.

Электрокардиография

Электрокардиограмма это графическое выражение изменений во времени интегральной электрической активности сердца.

Выделяют следующие основные функции сердца:

Автоматизм - это способность сердца самостоятельно вырабатывать импульсы, вызывающие возбуждение. В норме наибольшим автоматизмом обладает синусовый узел.

Проводимость - способность сердца проводить импульсы из места их возникновения до сократительного миокарда.

Возбудимость - способность сердца возбуждаться под влиянием импульсов. Во время возбуждения возникает электрический ток, который регистрируется гальванометром в виде ЭКГ.

Сократимость - способность сердца сокращаться под влиянием импульсов и обеспечивать функцию насоса.

Рефрактерность - невозможность возбужденных клеток миокарда снова активизироваться при возникновении дополнительных импульсов. выделяют абсолютную (сердце не отвечает ни на какое возбуждение) и относительную (сердце может отвечать только на очень сильное возбуждение) рефрактерность.

СТРОЕНИЕ И ФУНКЦИИ ПРОВОДЯЩЕЙ СИСТЕМЫ СЕРДЦА

Центр автоматизма 1-го порядка (или водитель ритма 1-го порядка, синусовый узел, узел Кис-Флака) расположен в правом предсердии в области устьев полых вен (рис 40.).

Рис.40. Схема проводящей системы сердца

Это образование клеток в норме ритмично генерирует импульсы с частотой 60-90 в 1 минуту. После возникновения импульс проводится на миокард. Сначала он проводится на правое, затем на левое предсердие и по межузловым трактам доходит до следующего узла. Он называется атриовентрикулярным узлом (А-В узел Ашофф - Тавара), расположенным в нижней части правого предсердия, и является водителем ритма 2-го порядка. В норме он не образует импульсы, но если синусовый узел не работает, то А-В узел начинает вырабатывать импульсы с частотой 40-60 в 1 минуту. Пройдя через А-В узел, импульс проходит по пучку Хиса, который расположен в межжелудочковой перегородке. От пучка Хиса отходит правая ножка, которая проводит импульсы на миокард правого желудочка, и левая ножка, делящаяся на переднюю и заднюю ветви, проводящая импульсы на левый желудочек. Клетки пучка Хиса тоже обладают автоматизмом, они вырабатывают импульсы с частотой 15-25 в 1 минуту. Это центр автоматизма 3-го порядка. Ножки пучка Хиса образуют конечные разветвления - волокна Пуркинье, которые подходят к каждой миофибрилле. Волокна также обладают автоматизмом (с частотой импульса 15 - 20 в 1 минуту).

Прежде чем приступить к изучению ЭКГ, надо вспомнить понятие об электрическом поле. Электрическое поле подразумевает наличие 2-х зарядов (положительного и отрицательного). Система, состоящая из 2-х равных по величине, но противоположных по знаку, максимально близко расположенных друг к другу зарядов, называется диполем. Электрический диполь вызывает появление разности потенциалов. Разность потенциалов называется электрической движущей силой (ЭДС) источника тока. Вектор ЭДС диполя изображается отрезком прямой, соединяющей оба его полюса, и направлен от “минуса к “плюсу“. В сердце во время его возбуждения также образуется электрическое поле. ЭДС сердца характеризуется направлением и величиной, т. е. является векторной величиной.

Электрофизиологические основы электрокардиографии

Мембранная теория возникновения биопотенциалов

В основе возникновения электрических явлений в сердце лежит трансмембранное перемещение ионов К+, Na+, Ca2+, CI- в клетках миокарда. Внутри невозбужденной клетки находятся ионы К+, концентрация которого в 30 раз выше, чем во внеклеточной жидкости. Наоборот, во внеклеточной среде примерно в 25 раз больше Ca2+ по сравнению с внутриклеточной средой. Такие высокие градиенты концентрации ионов по обе стороны мембраны поддерживаются благодаря функционированию в ней ионных насосов и требуют затраты энергии. В невозбужденной клетке мембрана более проницаема для К+ и CI- .

Поэтому ионы К+ в силу концентрационного градиента стремятся выйти из клетки, а ионы CI-, наоборот, входят внутрь клетки. Это приводит к поляризации клеточной мембраны: наружная ее поверхность становится положительной, а внутренняя – отрицательной. Возникающая разность потенциалов в такой ситуации ничтожно мала, тем не менее между наружной и внутренней поверхностью клеточной мембраны возникает трансмембранный потенциал покоя (ТМПП).

При возбуждении клетки резко изменяется проницаемость ее стенки для различных ионов. В частности, Na+ устремляется внутрь клетки, а К+ - из клетки. Происходит возникновение трансмембранного потенциала действия (ТМПД), который осуществляется в несколько фаз (фазы 0,1,2,3,4). Во время этих фаз благодаря меняющимся потокам основных ионов через мембрану клеток в сердечной мышце в целом осуществляются два основных процесса - деполяризации и реполяризации. Деполяризация происходит в фазу возбуждения клетки и характеризуется сменой заряда мембраны: внутренняя поверхность ее становится положительной, а наружная – отрицательной. Деполяризация осуществляется в фазу О, когда ТМПД достигает наибольшего значения, он несколько снижается в фазу 1, затем переходит в фазу 2, в течение которой величина ТМПД поддерживается примерно на одном уровне, что приводит к формированию на кривой ТМПД (плато). Во время деполяризации формируются зубцы Р, Q, R, S ЭКГ. Затем наступает процесс реполяризации: поляризация клетки возвращается к исходному состоянию (наружная поверхность ее оказывается снова заряженной положительно, а внутренняя – отрицательно). ТМПД падает и достигает величины ТМПП. Реполяризация захватывает фазы 2 и полностью 3 фазу ТМПД. В эту фазу формируется зубец Т электрокардиограммы.

Затем наступает фаза диастолы (4 фаза ТМПД), во время которой происходит полное восстановление исходной концентрации К+, Na+, Ca2+, CI- соответственно внутри и вне клетки благодаря действию «Na+ - К+ - насоса».

Процессы деполяризации и реполяризации как отдельной клетки, так и в целом всего сердца происходят поэтапно. При этом возбужденный участок клетки заряжается отрицательно, невозбужденный – положительно. Таким образом, каждая клетка представляет своеобразный диполь со знаками минус (-) и плюс (+). В такой ситуации, как известно, возникает электродвижущая сила (ЭДС), вектор которой направлен от (–) к (+).

Если эти процессы рассматривать по отношению к работающему сердцу, то его можно рассматривать как один большой (суммированный) диполь, в котором есть отрицательный и положительный полюс. В частности, сердце возбуждается не все одновременно, а поэтапно. Импульс, приходящий из синусового узла возбуждает в первую очередь предсердия и они заряжаются отрицательно, в то же время желудочки остаются невозбужденными и они заряжены положительно. Формируется большой диполь со знаком минус у основания сердца и знаком плюс по направлению к желудочкам. Возникает суммированная ЭДС сердца, вектор которой почти совпадает с анатомической осью сердца и направлен сверху вниз, сзади наперед и справа налево.

Таким образом, работающее сердце – своеобразный генератор биотоков, вокруг которого, как известно, возникают электрические поля, которые пронизывают все тело и имеют разную полярность зарядов: вокруг отрицательно заряженных участков миокарда формируются отрицательные электрические поля, вокруг положительно заряженных – положительные электрические поля.

В такой ситуации не составляет трудностей присоединить в определенной последовательности электроды к участкам тела и при помощи специального прибора электрокардиографа зафиксировать биотоки в виде кривой электрокардиограммы.