- •1. Содержание, структура, задачи экологии. Направления развития современной экологии.
- •2. Понятие об экологических факторах. Классификации экологических факторов.
- •3. Общие закономерности действия экологических факторов на организмы.
- •4. Свет как важнейший экологический фактор. Роль света в жизни растений, животных, человека.
- •5. Температура, влияние температуры на разные стороны жизнедеятельности организмов.
- •6. Экологические группы растений и животных по отношению к температуре.
- •7. Влажность. Роль влажности в жизни организмов.
- •8. Экологические группы организмов по водному балансу.
- •9. Понятие адаптации в экологии. Основные пути адаптации организмов.
- •10. Особенности адаптации человека. Концепция общего адаптационного синдрома г. Селье.
- •11. Почва как среда обитания. Специфика почвы как трехфазной системы.
- •12. Экологические группы почвенной фауны.
- •13. Живые организмы как среда обитания.
- •14. Наземно-воздушная среда обитания.
- •15. Водная среда обитания.
- •16. Экологические группы гидробионтов.
- •17. Общая характеристика биологических ритмов организмов.
- •18. Суточные ритмы.
- •19. Приливно-отливные ритмы.
- •20. Годовые ритмы.
- •21. Классификация жизненных форм растений к. Раункиера.
- •22. Классификация жизненных форм растений а.Г.Серебрякова.
- •23. Классификации жизненных форм животных.
- •24. Особенности популяции как надорганизменной системы. Основные подходы к классификации популяций.
- •25. Половая структура популяций.
- •26. Возрастная структура популяций. Возрастной спектр популяций. Типы популяций по возрастному спектру.
- •27. Пространственная структура популяций. Территориальное поведение у животных.
- •28. Этологическая структура популяций. Одиночный образ жизни. Семейный образ жизни. Колония. Стая. Стадо.
- •29. Динамика популяций: биотический потенциал, рождаемость, смертность, выживаемость, кривые выживания, расселение, миграции.
- •30. Модели роста популяций. Стратегии популяций.
- •31. Флуктуации популяций.
- •32. Гомеостаз популяций. Механизмы гомеостаза и причины его нарушения.
- •33. Биоценоз как экологическая единица.
- •34. Экологическая ниша.
- •35. Видовая структура биоценоза.
- •36. Пространственная структура биоценоза.
- •37. Основные типы связей организмов в биоценозе: трофические, топические, форические, фабрические.
- •38. Формы межвидовых взаимоотношений организмов: хищник-жертва, паразит-хозяин, комменсализм, аменсализм, мутуализм, нейтрализм, конкуренция.
- •39. Понятие экосистемы в экологии. Структура экосистем. Типы экосистем. Понятие о биогеоценозе.
- •40. Круговорот веществ и распределение энергии в экосистеме. Закон Линденмана.
- •41. Биологическая продуктивность экосистем. Правила пирамид.
- •42. Динамика экосистем: циклические изменения в экосистемах.
- •43. Поступательные изменения в экосистемах. Экологические сукцессии и их закономерности.
- •44. Типы веществ биосферы.
- •45. Границы биосферы.
- •46. Структура биосферы.
- •47. Свойства биосферы.
- •48. Живое вещество биосферы и его свойства.
- •6. Высокая скорость обновления живого вещества.
- •49. Функции живого вещества.
- •50. Учение о ноосфере.
7. Влажность. Роль влажности в жизни организмов.
Протекание всех биохимических процессов в клетках и нормальное функционирование организма в целом возможны только при достаточном обеспечении его водой — необходимым условием жизни. Поддержание водного баланса имеет огромное значение для всех живых организмов.
Дефицит влаги — одна из наиболее существенных особенностей наземно-воздушной среды жизни. Вся эволюция наземных организмов шла под знаком приспособления к добыванию и сохранению влаги. Режимы влажности среды на суше очень разнообразны— от полного и постоянного насыщения воздуха водяными парами в некоторых районах тропиков до практически полного их отсутствия в сухом воздухе пустынь. Велика также суточная и сезонная изменчивость содержания водяных паров в атмосфере. Водообеспечение наземных организмов зависит также от режима выпадения осадков, наличия водоемов, запасов почвенной влаги, близости грунтовых вод и т. п. Это привело к развитию у наземных организмов множества адаптации к различным режимам водообеспечения, которые уже обсуждались выше. Экология видов, существующих в атмосфере, насыщенной водяными парами, близка к экологии гидробионтов. Ксерофильность растений и животных свойственна только наземно-воздушной среде.
Проблемы водообеспечения особенно важны для обитателей суши. Особенности поддержания водного баланса зависят от того, в какой экологической обстановке они обитают, какой образ жизни ведут, насколько могут использовать различные источники влаги и задерживать воду в теле. Низшие водные растения поглощают воду всей поверхностью тела.
Низшие наземные растения из влажного субстрата поглощают воду погруженными в него частями таллома, а влагу дождя, росы и тумана — всей поверхностью. В максимально набухшем состоянии лишайники содержат в 2—3 раза больше воды, чем сухого вещества.
Среди высших наземных растений мохообразные поглощают воду из почвы ризоидами, а большинство других — корнями, специализированными органами, всасывающими воду. В клетках корня развивается сосущая сила чаще всего в несколько атмосфер, но этого достаточно для извлечения из почвы большей части связанной воды. Лесные деревья умеренной зоны развивают сосущую силу корней около 30 атм, некоторые травянистые растения (земляника лесная, медуница неясная) — до 20 и даже свыше 40 атм (смолка обыкновенная); растения сухих областей — до 60 атм.
Когда в непосредственной близости от корней запасы воды в почве истощаются, корни увеличивают активную поверхность путем роста, так что корневая система растений постоянно находится в движении. У степных и пустынных растений часто можно видеть эфемерные корни, быстро вырастающие в периоды увлажнения почвы, а с наступлением засушливого периода засыхающие.
По типу ветвления различают корневые системы экстенсивные и интенсивные. Экстенсивная корневая система охватывает большой объем почвы, но сравнительно слабо ветвится, так что почва пронизана корнями негусто. Таковы корневые системы у многих степных и пустынных растений (саксаула, верблюжьей колючки), у деревьев умеренной полосы (сосны обыкновенной, березы повислой), а из трав у люцерны серповидной, василька шероховатого и др.
Интенсивная корневая система охватывает небольшой объем почвы, но густо пронизывает ее многочисленными сильно ветвящимися корнями, как, например, у степных дерновинных злаков (ковылей, типчака и др.), у ржи, пшеницы. Между этими типами корневых систем есть переходные.
Корневые системы очень пластичны и резко реагируют на изменение условий, в первую очередь увлажнения. При недостатке влаги корневая система делается экстенсивнее. Так, при выращивании ржи в разных условиях общая длина корней (без корневых волосков) в 1000 см3 почвы варьирует от 90 м до 13 км, а поверхность корневых волосков может увеличиться в 400 раз.
Всасывание воды корнями затруднено при большой сухости почвы, засолении или сильной кислотности, при низкой температуре. Например, ясень обыкновенный при температуре почвы 0 °С поглощает воды в 3 раза меньше, чем при +20…+ 30°С. Способность поглощать воду при той или иной температуре зависит от приспособленности растений к тепловому режиму почв в местах их произрастания. Виды с ранним началом развития, как правило, могут всасывать воду корнями при более низкой температуре, чем развивающиеся позднее. Тундровые растения и некоторые деревья, растущие на почвах с подстилающей их вечной мерзлотой, могут поглощать воду при температуре почвы 0 °С.
У высших растений есть и дополнительные пути поступления воды в тело. Мхи могут поглощать воду всей поверхностью, как и лишайники. Особенно много воды впитывают такие мхи, как кукушкин лен, виды сфагнума, чему способствует строение их листьев и побегов. При полном насыщении сфагновые мхи содержат в своем теле в десятки раз больше воды, чем в воздушно-сухом состоянии. Семена поглощают воду из почвы. Из воздуха, насыщенного водяными парами, в дождевом тропическом лесу поглощают воду многие эпифиты, например папоротник гименофиллум — тонкими листьями, многие орхидеи — воздушными корнями. В чашевидных влагалищах листьев многих зонтичных скапливается вода, которая постепенно всасывается эпидермисом. Виды из рода тилляндсия (бромелиевые) существуют в пустыне Атакама практически исключительно за счет влаги туманов и росы, которую впитывают чешуевидные волоски на листьях.
Поступившая в растение вода транспортируется от клетки к клетке (ближний транспорт) и по ксилеме во все органы, где расходуется на жизненные процессы (дальний транспорт). Не более 0,5% воды идет на фотосинтез, а остальная — на восполнение испарения и поддержание тургора. Вода испаряется со всех поверхностей, как внутренних, так и наружных, соприкасающихся с воздухом. Различают устьичную, кутикулярную и пе-ридермальную трапепирацию.
Через устьица транспирируется влага, испарившаяся с поверхности клеток внутри органов. Это основной путь расходования воды растением. Кутикулярная транспирация составляет менее 10% от свободного испарения; у вечнозеленых хвойных пород она сокращается до 0,5%, а у кактусов даже до 0,05%. Относительно велика кутикулярная транспирация молодых развертывающихся листьев. Перидермальная транспирация обычно незначительна. Интенсивность общей транспирации повышается с увеличением освещенности, температуры, сухости воздуха и при ветре.
Водный баланс остается уравновешенным в том случае, если поглощение воды, ее проведение и расходование гармонично согласованы друг с другом. Нарушения его могут быть кратковременными или длительными. По приспособлениям наземных растений к кратковременным колебаниям условий водоснабжения и испарения различают пойкилогидрические и гомойогидриче-ские виды.
У пойкилогидрических растений содержание воды в тканях непостоянно и сильно зависит от степени увлажнения окружающей среды. Они не могут регулировать трапепирацию и легко и быстро теряют и поглощают воду, используя влагу росы, туманов, кратковременных дождей, в сухом состоянии находятся в анабиозе. Способны обитать там, где короткие периоды увлажнения чередуются с длительными периодами сухости.
Пойкилогидричность свойственна сине-зеленым водорослям, зеленым водорослям из порядка протококковых, некоторым грибам, лишайникам, а также ряду высших растений: многим мхам, некоторым папоротникам и даже отдельным цветковым, по-видимому вторично перешедшим к пойкилогидрическому образу жизни. Таков, например, южноафриканский кустарник Myrotham-nus flabellifolia (розоцветные).
В мелких клетках таллома большинства низших растений нет центральной вакуоли, поэтому при высыхании они равномерно сжимаются без необратимых изменений улътраструктуры протопласта. Сине-зеленые водоросли, вегетирующие на поверхности почвы в пустыне, высыхая, превращаются в темную корочку. От редких дождей их слизистая масса набухает и нитчатые тела начинают вегетировать. Мхи, растущие на сухих скалах, стволах деревьев или на поверхности почвы лугов и степей (роды Thuidium, Tortula и др.), также могут сильно высыхать, не теряя жизнеспособности.
Пойкилогидричны пыльцевые зерна и зародыши в семенах растений.
Гомойогидрические растения способны поддерживать относительное постоянство обводненности тканей. К ним относят большинство высших наземных растений. Для них характерна крупная центральная вакуоль в клетках. Благодаря этому клетка всегда имеет запас воды и не так сильно зависит от изменчивых внешних условий. Кроме того, побеги покрыты с поверхности эпидермисом с малопроницаемой для воды кутикулой, транспирация регулируется устьичным аппаратом, а хорошо развитая корневая система во время вегетации может непрерывно поглощать влагу из почвы. Однако способности гомойогидрических растений регулировать свой водный обмен различны. Среди них выделяют разные по экологии группы.