Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекцій ТО.doc
Скачиваний:
8
Добавлен:
21.11.2018
Размер:
635.39 Кб
Скачать

Тема 4. Технологія і режими термічної обробки

  1. Загальні положення

  2. Гартівні середовища

  3. Загартовуваність і прогартовуваність

  1. Загальні положення

Для забезпечення технологічної послідовності процесів і додержання необхідних режимів термічної застовуються нагрівальні пристрої, в яких використовуються різні охолоджувачі середовища як рідкі, так і газоподібні.

Останнім часом для термічної обробки використовують джерела висококонцентрованої енергії – електронні і лазерні промені. Регулювання режимів нагрівання, витримки і охолодження в серійному і масовому виробництві забезпечується на базі сучасної мікропроцесорної техніки.

Відрізняють термічну обробку, призначену для підготовки структури для подальших технологічних операцій (наприклад, обробки різанням, пластичного деформування або завершувальної термообробки) і завершувальну, яка надає матеріалу деталі ту чи іншу структуру і відповідні властивості.

Послідовність і режим термообробки задаються, як правило, графіком (рис. 1.1), який визначає тривалість і температуру нагрівання, час витримки і температуру охолодження. Загальний час нагрівання складається із часу досягнення необхідної температури – τн і часу ізотермічної витримки при цій температурі – τв для досягнення повноти перетворень, які відбуваються при нагріванні. Тобто загальний час нагрівання: τзаг = τн + τв.

Величина τн залежить від нагрівальних властивостей середовища, від розмірів, форми і матеріалу деталей, а також способу їх укладання в печі. Точно визначити час нагрівання можливо лише експериментально.

В реальних промислових умовах досить часто для визначення величини τн користуються даними з практичного досвіду. На 1 мм перетину або товщини виробів із доевтектоїдних сталей витривалість нагрівання приймають 45 – 75 с в електропечах і 15 – 20 с в соляних розчинах. Величина ізотермічної витримки повинна бути мінімальною, але необхідною для завершення фазових перетворень при нагріванні. Тривалість τв приймають 15 – 25 % від величини τн. для вуглецевих інструментальних сталей при нагріванні в електропечах τв ~ 50 ÷ 80 с на 1 мм мінімального перетину, а для легованих сталей 70 ÷ 90 с/мм. Відповідно при нагріванні в розчинах солей 20 ÷ 35 с/мм – для вуглецевих сталей і 25 ÷ 30 с/мм – для легованих.

Деталі складної конфігурації рекомендується для зменшення жолоблення перед нагріванням під термообробку попередньо розігрівати до 400 – 600 °С.

  1. Гартівні середовища

Метою гартування є отримання високих механічних властивостей на необхідну глибину виробу. Це забезпечується при отриманні мартенситної структури.

В процесі гартування для переохолодження аустеніту до температури початку мартенситних перетворень необхідно створювати необхідну швидкість охолодження. Але для створення оптимальних умов гартування ця швидкість повинна змінюватись в області температурного інтервалу охолодження – від температури аустенізації до кімнатної температури.

Необхідна зміна швидкостей охолодження при гартуванні пояснюється різною стійкістю аустеніту при різних температурах, а також виникненням внутрішніх гартівних напруг.

Гартівні напруги складаються з термічних і структурних. Виникнення термічних напруг обумовлюється перепадом температур по перетину деталі і, відповідно, різним ступенем стиснення внутрішніх і зовнішніх шарів металу в період охолодження.

Структурні перетворення обумовлюються перебігом в часі мартенситних перетворень по перетину деталі. Поверхневі шари раніше досягають мартенситної точки. Оскільки мартенситне перетворення пов’язане із зміною об’єму на декілька відсотків, то перебіг перетворень в часі по глибині призводить до виникнення структурних напруг. Загальні гартівні напруги збільшуються із зростанням температури нагрівання і ступеню переохолодження. Найбільш небезпечною для виникнення гартівних тріщин є температурна зона нижче температурної точки Мп, коли з’являються структурні напруги і утворюється крихка структура – мартенсит. Вище температури початку мартенситних перетворень існують лише термічні напруги. При цьому сталь ще зберігає аустенітну (більш пластичну) структуру.

Виходячи з цього і на основі аналізу С-подібної діаграми встановлено, що найбільшу швидкість охолодження (рис. 4.1, крива 1) необхідно витримувати в області найменшої стійкості аустеніту – 400 – 650 °С. Вище і нижче цієї зони деталь можливо охолоджувати відносно повільно. Особливо повільно треба проводити охолодження починаючи з температур 300 – 200 °С, нижче яких в більшості сталей утворюється мартенсит. Графік – 1 на рис 4.1 є ідеалізованою кривою охолодження при гартуванні. На сьогоднішній день ще не створено такого охолоджуючого середовища, яке б забезпечувало швидке охолодження в перлітному інтервалі температур і повільне – в мартенситному. Найбільш поширеним охолоджуючим середовищем при гартуванні є вода при різних температурах, розчини NaOH і NaCl у воді, мінеральні і трансформаторні масла, розплавлені солі. В табл.. 4.1 наведені для прикладу швидкості охолодження невеликих стальних зразків в різних температурних інтервалах.

Таблиця 4.1 – Приклади гартівних середовищ і відповідне Vох

Гартівне середовище

Швидкість охолодження в інтервалі температур, °С

650 – 550

300 – 200

Вода при 18 °С

Вода при 74 °С

10 % розчин NaOH в воді при 18 °С

Мінеральне масло

600

30

1200

100 – 150

270

200

300

20 – 50

Вода швидко охолоджує і в перлітному, і в мартенситному інтервалі температур. Домішки солей або лугів збільшують швидкість саме в перлітній зоні. Масло, навпаки, повільно охолоджує в обох випадках. Тому його застосовують для сталей з високою прогартовуваністю.

Розігріта вода не замінює масел, оскільки практично не змінює швидкість охолодження в мартенситній зоні.

Останнім часом застосовують в якості охолоджуючих середовищ розчини полімерів в воді, які займають проміжне положення між водою і маслом.

Різні гартівні середовища забезпечують проникнення структури мартенситу на різну глибину, тобто забезпечують різну ступінь прогартовуваності. Роздивимось детальніше це поняття.