
- •Математический маятник
- •3)Лагранжев подход
- •1.1. Гармонические колебания
- •1.2. Векторная интерпретация и комплексное представление
- •1.3. Модулированные колебания
- •Сложение колебаний. Векторные диаграммы. Биения.
- •Сложение колебаний Векторная диаграмма
- •3.4.Анализ колебаний маятника на основе равенства сил, моментов и сохранения энергии
- •2.4. Гармонический осциллятор и его характеристики
- •3.3. Солитонное решение уравнения для осциллятора с нелинейностью синуса
- •2.5. Гармонический осциллятор и уравнение Шредингера.
- •2.6. Цепочка осцилляторов и уравнение Клейна-Гордона-Фока(укгф)
- •Уравнение распространения волн в газовой среде.
- •11.2. Гармоническая волна
- •11.3. Волны в пространстве
- •1. Распространение волн в среде
- •§ 2. Уравнения плоской и сферической волн
- •§ 3. Уравнение плоской волны, распространяющейся в произвольном направлении
- •§ 4. Волновое уравнение
- •§ 5. Скорость упругих волн в твердой среде
- •§ 6. Энергия упругой волны
- •§ 7. Стоячие волны
- •Адиабатический процесс.
- •Термодинамические потенциалы.
- •Раздел I. Термодинамика
- •Тема 1. Введение. Основные понятия и определения.
- •1.1 Введение
- •1.2. Термодинамическая система.
- •1.3. Параметры состояния.
- •1.4. Уравнение состояния и термодинамический процесс.
- •Тема 2. Первый закон термодинамики.
- •2.1. Теплота и работа.
- •2.2. Внутренняя энергия.
- •2.3. Первый закон термодинамики.
- •2.4. Теплоемкость газа.
- •2.5. Универсальное уравнение состояния идеального газа.
- •2.6. Смесь идеальных газов.
- •Тема 3. Второй закон термодинамики.
- •3.1. Основные положения второго закона термодинамики.
- •3.2. Энтропия.
- •3.3. Цикл и теоремы Карно.
- •Тема 4. Термодинамические процессы.
- •4.1. Метод исследования т/д процессов.
- •4.2. Изопроцессы идеального газа.
- •4.3. Политропный процесс.
- •Тема 5. Термодинамика потока.
- •5.1. Первый закон термодинамики для потока.
- •5.2. Критическое давление и скорость. Сопло Лаваля.
- •5.3.Дросселирование.
- •Тема 6. Реальные газы. Водяной пар. Влажный воздух.
- •6.1. Свойства реальных газов.
- •6.2. Уравнения состояния реального газа.
- •6.3. Понятия о водяном паре.
- •6.4. Характеристики влажного воздуха.
- •Термодинамика Элементы статистической физики.
- •Закон Фика и уравнение диффузии.
- •Закон Ньютона для вязкого трения.
- •5.10. Вывод закона Фурье
- •1) Введенная величина f есть свободная энергия системы,
- •3) Параметр θ пропорционален абсолютной температуре т:
- •2.16. Большое каноническое распределение и термодинамика систем с переменным числом частиц
- •Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул.
- •9.1. Бозоны и фермионы. Принцип Паули
§ 3. Уравнение плоской волны, распространяющейся в произвольном направлении
Найдем уравнение плоской волны, распространяющейся в направлении, образующем с осями координат x, y, z углы α, β, γ. Пусть колебания в плоскости, проходящей через начало координат (рис. 3.1), имеют вид
= a cos ( t + ) (3.1)
Возьмем волновую поверхность (плоскость), отстоящую от начала координат на расстояние l. Колебания в этой плоскости будут отставать от колебаний (3.1) на время τ =l/υ:
= a cos [ ( t − x/v) + ] =
a cos ( t − kl + ). (3.2)
(k = ω/υ;
см. формулу (2.7)).
Выразим l через радиус-вектор точек рассматриваемой поверхности. Для этого введем единичный вектор n нормали к волновой поверхности. Из рис. 3.1 видно, что скалярное произведение n на радиус-вектор r любой из точек поверхности равно l:
nr = r cos φ= l.
Заменим в (3.2) l через nr:
= a cos ( t − knr + ) (3.3)
Вектор
k = kn, (3.4)
равный по модулю волновому числу k = 2π/λ и имеющий направление нормали к волновой поверхности, называется волновым вектором. Таким образом, уравнение (3.3) можно представить в виде
( r, t ) = a cos ( t − kr + ) (3.5)
Мы получили уравнение плоской незатухающей волны, распространяющейся в направлении, определяемом волновым вектором k. Для затухающей волны нужно добавить в уравнение множитель e–γl = e–γ nr.
Функция (3.5) дает отклонение от положения равновесия точки с радиусом-вектором r в момент времени l (r определяет равновесное положение точки). Чтобы перейти от радиуса-вектора точки к ее координатам х, у, z, выразим скалярное произведение kr через компоненты векторов по координатным осям:
kr = kxx + kyy + kzz.
Тогда уравнение плоской волны примет вид
(x, y, z, t ) = a cos ( t − kxx – kyy – kzz + ) (3.6)
Здесь
kx = (2π/ λ) cos α,
ky =(2π/ λ) cos β,
kz =(2π/ λ) cos γ. (3.7)
Функция (3.6) дает отклонение точки с координатами х, у, z в момент времени t. В случае, когда n совпадает с ex, kx = х, ky = kz = 0 (и уравнение (3.6) переходит в (2.8). Очень удобна запись уравнения плоской волны в виде
= Re aei (ωt-kr+α) (3.8)
Знак Re обычно опускают, подразумевая, что берется только вещественная часть соответствующего выражения. Кроме того, вводят комплексное число
â = aeiα, (3.9)
которое называют комплексной амплитудой. Модуль этого числа дает амплитуду, а аргумент – начальную фазу волны Таким образом, уравнение плоской незатухающей волны можно представить в виде
= âei (ωt-kr) (3.10)
Преимущества такой записи выяснятся в дальнейшем.
§ 4. Волновое уравнение
У
равнение
любой волны является решением
дифференциального уравнения, называемого
волновым. Чтобы установить вид волнового
уравнения, сопоставим вторые частные
производные по координатам и времени
от функции (3.6), описывающей
плоскую волну. Продифференцировав
эту функцию дважды по каждой из переменных,
получим
С
ложение
производных по координатам дает
(4.1)
Сопоставив эту сумму с производной по времени и заменив k2/ω2 через 1/υ2 (см. (2.7)), получим уравнение
(4.2)
Это и есть волновое уравнение. Его можно записать в виде
(4.3)
где Δ – оператор Лапласа.
Легко убедиться в том, что волновому уравнению удовлетворяет не только функция (3.6), но и любая функция вида
f(x, y, z, t)=f(t − kxx – kyy – kzz + ) (4.4)
Действительно, обозначив выражение, стоящее в скобках в правой части (4.4), через ς, имеем
(4.5)
Аналогично
(4.6)
Подстановка выражений (4.5) и (4.6) в уравнение (4.2) приводит к выводу, что функция (4.4) удовлетворяет волновому уравнению, если положить υ=ω/k.
Всякая функция,
удовлетворяющая уравнению вида
(4.2), описывает
некоторую волну, причем корень квадратный
из величины, обратной коэффициенту
при
,
дает фазовую скорость этой волны.
Отметим, что для плоской волны, распространяющейся вдоль оси х, волновое уравнение имеет вид
(4.7)