
2.2. Методические указания.
На рисунке 2.4 приведена схема двухфазного короткого замыкания между фазами B и C.
Рис.2.4. Двухфазное короткое замыкание.
При двухфазном КЗ ток в петле короткого замыкания создается междуфазной ЭДС, например, EBC при двухфазном КЗ между фазами B и C.
Ток в неповрежденной фазе без учета токов нагрузки равен нулю. Токи в поврежденных фазах равны по значению, но противоположны по фазе:
(2.3)
Вектор тока короткого замыкания IB отстает от создающей его ЭДС EBC на угол φс, определяемый соотношением реактивных и активных сопротивлений системы и линии
, (2.4)
а от напряжения в промежуточной точке P на угол φл, определяемый соотношением реактивного и активного сопротивлений участка линии от шин подстанции до места возникновения КЗ
, (2.5)
Построение
векторной диаграммы для двухфазного
КЗ
начинается с построения симметричной
системы фазных ЭДС EA,
EB,
EC
(рисунок 2.5),
при этом абсолютное значение фазной
ЭДС
.
Далее откладывается вектор EBC из центра системы фазных ЭДС точки О. Под углом φс к вектору EBC откладывается вектор тока фазы B IB и
противоположно ему по направлению вектор тока фазы C IC.
Напряжение неповрежденной фазы A одинаково в любой точке сети и равно фазной ЭДС: UA = EA. Напряжения фаз B и C в месте короткого замыкания равны UBK = UCK. Так как фазные напряжения при двухфазном КЗ не содержат составляющих нулевой последовательности, то
3U0 = UAK + UBK + UCK = 0, (2.6)
откуда
. (2.7)
Напряжения фаз B и C в месте установки защиты (точка P) UB и UC получаются прибавлением к UBK и UCK падений напряжений в линии ΔUB и ΔUС :
UB = UBK + ΔUB; (2.8)
UC = UCK + ΔUC. (2.9)
Эти падения напряжения опережают токи IB и IC на угол φл, а их абсолютные значения:
,
(2.10)
где UBC – остаточное напряжение между фазами B и C в точке P.
Для построения вектора UBC через точку K под углом φл к вектору тока IB проводится линия и на ней справа и слева от точки К откладываются значения падений напряжения ΔUB и ΔUC, при этом вектор UBC будет равен:
.
(2.11)
Соединяя концы векторов UA, UB, UC, строится треугольник линейных напряжений UAB, UBC, UCA.
Рис. 2.5. Векторные диаграммы токов и напряжений при двухфазном
коротком замыкании между фазами B и C.
Построение векторных диаграмм реле направления мощности.
При 90-градусной схеме включения к реле, включенному на ток фазы B IB, подводится напряжение UCA, а к реле, включенному на ток фазы C IC – напряжение UAB.
Определение угла φPC между током IC и напряжением UAB.
Напряжение UAB опережает ЭДС EA на угол ψ1, ток IC опережает эту же ЭДС EA на угол (90º-φс). Следовательно, ток IC отстает от напряжения UAB на угол
φPC = ψ1 - (90º-φс) = ψ1 + φс - 90º. (2.12)
Для определения угла ψ1 необходимо вычислить значение tg ψ1 как отношение проекции вектора UAB на горизонтальную ось (EBC) к проекции UAB на вертикальную ось (EA):
. (2.13)
Абсолютное значение напряжения UAB в точке P:
. (2.14)
Определение угла φPB между током IB и напряжением UCA.
Напряжение UCA отстает от напряжения UCK на угол ψ2, ток IB опережает это же напряжения UCK на угол (90º-φс). Следовательно, ток IB опережает напряжение UCA на угол
φPB = (90º-φс) + ψ2 . (2.15)
Для определения угла ψ2 необходимо вычислить значение tg ψ2 как отношение проекции вектора UCA на горизонтальную ось (EBC) к проекции UCA на вертикальную ось (EA):
. (2.16)
Абсолютное значение напряжения UCA в точке P:
. (2.17)
Построим векторную
диаграмму для реле, включенного на ток
фазы B
IB,
с углом максимальной чувствительности
=
- 30º и углом
внутреннего сдвига α
=90º −
.
В качестве базового вектора служит вектор рабочего напряжения
UP = UCA, относительно которого откладываются линия изменения знака момента, линия максимальной чувствительности и вектор рабочего тока. За положительные принимаются углы, направление которых отсчитываются от базового вектора по часовой стрелке, а за отрицательные – против часовой стрелки.
Построение
векторной диаграммы для реле направления
мощности начинается с построения вектора
рабочего напряжения UP
= UCA.
Под углом
к рабочему
напряжению строится ось - линия
максимальной чувствительности,
перпендикулярно к которой строится
другая ось – линия изменения знак
момента (Рис. 2.6).
Рис. 2.6. Векторная диаграмма реле направления мощности, включенного
на ток фазы B IB и междуфазное напряжение UCA.
Под углом φPB относительно базового вектора UP строится вектор рабочего тока IР = IB. Так как вектор IB опережает вектор UP=UCA, то угол φPB –отрицательный и отсчитывается относительно вектора UP против часовой стрелки. Заштрихованная часть диаграммы соответствует области отрицательных моментов, а не заштрихованная часть – области положительных моментов. Реле не действует, если вектор рабочего тока располагается в заштрихованной части диаграммы или значение рабочего напряжения близко нулю.
Построение векторной диаграммы для реле, включенного на ток фазы С IC, производится аналогичным образом (рисунок 2.7).
Вначале строится
вектор рабочего напряжения, подводимого
к обмотке напряжения реле, UP
= UAB.
Под углом
к рабочему
напряжению строится ось - линия
максимальной чувствительности,
перпендикулярно к которой строится
другая ось – линия изменения знак
момента . Под углом
к вектору напряжения UP
строится вектор тока IP=IC.
Рис. 2.7. Векторная диаграмма реле направления мощности, включенного на ток фазы B IC и междуфазное напряжение UAB.
Из сравнения
векторных диаграмм, изображенных на
рисунках 2.6 и 2.7, видно, что реле направления
мощности, включенное на ток фазы B,
находится в более выгодных условиях по
сравнению с реле направления мощности,
включенное на ток фазы C.
Угол
имеет большее отрицательное значение
по сравнению с углом
, следовательно, как следует из формулы
2.1, вращающий момент подвижной системы
реле, включенного на ток фазы B,
окажется больше вращающего момента
подвижной системы реле, включенного на
ток фазы C.