Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СвищеваПрофилактика рака возможна.doc
Скачиваний:
316
Добавлен:
15.11.2018
Размер:
1.58 Mб
Скачать

Эксперименты. Эксперименты ! эксперименты…

В экспериментах использовались следующие опухолевые клетки и трихомонады. В НИ онкологическом институте имени Петрова непосредственно от усыпленных животных были перенесены в пробирки с питательной средой:

- перевитые асцитные опухоли от белых беспородных мышей;

- перевитая экспериментальная меланома Б-16 от линейной черной мыши СВ1;

- солидная опухоль молочной железы от белой крысы, индуцированная у-облучением дозой 4 Гр.

В Институте цитологии РАН были получены моно- слои музейных штаммов:

- эпителоидная карцинома шейки матки HeLaS3; — овариальная тератокарцинома человека Ра-1;

- тестикулярная тератокарцинома мыши F-9.

Из ЦНИ кожно-венерологического института г. Москвы в НИИ акушерства и гинекологии имени Отта, где проводились исследования, были привезены две пробирки с лабораторными штаммами вагиналь ных трихомонад от двух женщин.

В экспериментах также использовались:

- вагинальная трихомонада от больных женщин из городского кожно-венерологического диспансера Санкт-Петербурга;

- содержимое слепой кишки от произвольно взятой безопухолевой белой беспородной мыши;

- соскоб с кишечника белой беспородной мыши:

- помет от безопухолевых белых беспородных мышей.

Для опухолевых клеток и трихомонад создавались идентичные условия: работа велась не с монослоем, а с суспензией клеток, помещенных в конические пробирки и бюретки. Для инкубации клеток использовались питательные среды для трихомонад с добавлением агар-агара и дрожжевого экстракта.

В современной науке наибольшее признание получили генетические исследования. Но для бесполых организмов наиболее эффективный и мощный метод генетических исследований — метод гибридизации — оказался невозможным. Вместо него используется анализ фенотипов.

В данных экспериментах использовались два основных метода фенотипического анализа:

1) метод индукции физическими и химическими воздействиями как наиболее эффективный источник наследственных вариаций исследуемых клеток:

2) метод сравнительных морфофизиологических исследований в одинаковых условиях культивирования опухолевых клеток и трихомонад, имеющих независимое происхождение.

Трихомонады — бесполые животные-клетки, в них сочетаются клетка и организм, особь и вид. А так как для агамно размножающихся простейших вид прежде всего выражается морфофизиологическими признаками, при проведении эксперимента ставилась следующая задача: воздействием физических и химических факторов (летальных для нормальных клеток) выявить наследственные вариации опухолевых клеток, например способность переходить в амебовидные и жгутиковые формы.

Сравнительный анализ морфофизиологических характеристик опухолевых клеток и трихомонад показал:

а) опухолевые клетки и трихомонады не гибнут при минусовой температуре и перепадах температур более 30°С;

б) при обработке трипсином клетки не переварились — это свидетельствует о том, что это живые микроорганизмы (Д. Нортроп утверждал: «Трипсин не проникает в живую клетку, не атакует ее поверхность, так как предполагается небелковая природа поверхности клеток»)

в) в процессе культивирования в виде суспензий в питательной среде для трихомонад и особенно после облучения клеточных культур наблюдалось их морфологическое изменение: исходные опухолевые клетки и цистоподобные трихомонады имели размеры 3-6 микрон, но с переходом в другие формы протоплазма их разуплотнялась, и они достигли величины 25-35 микрон у амебовидных и 15-18 микрон — у жгутиковых:

г) способы размножения опухолевых клеток и трихомонад были идентичными, но отличались от размножения нормальных клеток, для которых характерен митоз, начинающийся с распределения 23 пар хромосом на две равноценные части и деления ядра на две половинки; наблюдалось (таблица 1):

- продольное деление цистоподобных клеток на две особи (простая перешнуровка), без заметной разницы между материнской и дочерней особями:

- почкование: отделение от материнской клетки одной или нескольких особей гораздо меньшей величины, нередко они держатся на тонких «пуповинах».

Легко сказать: трихомонадная теория возбудителя рака. Это было как осенение, неожиданное прозрение. Мне предстояло отстоять эту теорию, доказать ее право на существование.

Обычно при культивировании опухолевых клеток онкологи создают им условия как для нормальных, и получают монослои ромбических или полигональных клеток, над которыми нередко плавают круглые клетки — одиночные и в виде колоний. Эти среды обычно содержат минеральные вещества и аминокислоты. Я называю это «вегетарианской» пищей.

Исходя из того, что опухолевые клетки — это одноклеточные животные, то есть трихомонады, я поместила их в «жирную» среду для трихомонад, содержащую печеночный экстракт, пептон, дрожжевой экстракт, минеральные вещества, стероидный гормон фолликулин, мальтозу и другие факторы роста для трихомонад. И это способствовало выявлению наследственных вариаций опухолевых клеток, которые на самом деле оказались цистоподобной формой трихо­монад. В процессе культивирования они постепенно переходили в узнаваемые амебовидные и жгутиковые формы. Как видно из таблицы 2, переход этот сопровождался изменением морфологии и размеров клеток в следующей последовательности:

- на начальной стадии происходило разуплотнение цистоподобных округлых и овальных безъядерных клеток, имевших размеры 3-6 микрон, при этом площадь плотных участков уменьшалась, а размеры клеток увеличивались за счет разуплотнения протоплазмы, —

- затем в некоторых клетках появились зерна хроматина;

- в процессе дальнейшего культивирования с пересевами, при которых добавлялась свежая питательная среда, формировались небольшие продолговатые ядра, часто смещенные от центра клетки;

- под воздействием трипсина, который не разрушил опухолевые клетки, но переварил белковые антитела, на их рецепторах, каковые в свое время и заставили перейти трихомонад в клеточную форму, и радиационного облучения появились крупные амебовидные клетки размером 25-35 микрон. При большом полиморфизме видно и определенное сходство исследуемых клеток. Опухолевые клетки и трихомонады были: ядерными, безъядерными, с зернами хроматина при наличии и без ядра, с ядром и ядрышком, с двумя ядрами и даже с четырьмя округлыми ядерными клетками сформировавшимися в амебовидной клетке, готовой к шизогонии -распаду на четыре дочерние клетки:

- в процессе дальнейшего культивирования наблюдался переход отдельных клеток в жгутиковую форму, размеры клеток уменьшались до 15-18 микрон за счет сгущения цитоплазмы и образования органоидов. Клетки зафиксированы на разных стадиях развития вегетативной формы и также отличались большим разнообразием форм;

- при длительной задержке с пересевами, в результате чего происходило накопление в среде токсических веществ обмена, наблюдались гибель амебовидных форм опухолевых клеток и трихомонад путем грануляции и разрушения на мелкие круглые частицы типа зерен и переход их в цистоподобную форму, по размерам меньше тех клеток, с которыми начинали эксперимент (фото 1-3).

Бесполое размножение простейших предполагает не только клеточный полиморфизм, но и полигеномность. Видообразование бесполых организмов в основном основывается на генетической адаптации к меняющимся условиям. Методы молекулярной гибридизации близких видов жгутиконосцев показали большие различия в последовательностях оснований ДНК. Что касается опухолевых клеток, известно, что они имеют разные наборы хромосом даже в одной опухоли. А это наводило на мысль и о полиморфизме геномов, состоящих из наборов хромосом. У нормальных клеток, обязательно имеющих по 23 пары хромосом, есть общие, то есть характеризованные, геномы, по которым можно определить и вид клеток. Казалось бы, и у трансформированных клеток должна быть такая картина, но исследования показали обратное.

Для начала вспомним, что такое ген, ДНК, хромосома и геном. Вся наследственная информация о человеке записана в генах. Ген — это единица структурной и функциональной наследственности, представляющая собой отрезок молекулы дезоксирибонуклеиновой кислоты (ДНК). Ген — часть хромосомы, каждый ген занимает строго определенное место в соответствующей хромосоме. Ген сложен (он содержит 1000-1500 нуклеотидов, что соответствует 0,0003-0,0005 мм), но как единица наследственной информации остается функционально неделимым.

Хромосомы, материальным субстратом которых является хроматин, — это главные структурно-функциональные элементы клеточного ядра, содержащие в линейном порядке гены и обеспечивающие хранение, воспроизводство генетической информации, а также начальные этапы ее реализации в признаки. В клетках тканей многоклеточных организмов хромосомы парны, так как происходят от двух родительских. Этим они отличаются от половых клеток, содержащих по одинарному набору хромосом. В интерфазе, то есть в период между делением, клетки хромосомы максимально деконденсированы, индивидуально не различимы и занимают весь объем ядра, образуя хроматин.

Спаренность хромосом позволяет при делении клеток митозом передавать вместе с одним из двух наборов хромосом всю наследственную информацию от родительской клетки дочерней, то есть воспроизводить себе подобную. А так как этот набор хромосом, то есть геном, в нормальных клетках постоянен, следовательно, нормальные клетки имеют характерный для них геном — характеризованный геном. По-другому обстоит дело у опухолевых клеток и трихомонад, которые делятся обычно не митозом: для них характерны разнообразные способы размножения: промитоз (упрощенный митоз), почкование, шизогония, когда из одной клетки образуется несколько дочерних. Естественно, когда от материнской клетки отшнуриваются.

Цитологическому сравнительному анализу были подвергнуты фиксированные и окрашенные препараты: опухолевых клеток рака молочной железы крысы, асцитной опухоли мыши и вагинальной трихомонады человека.

Анализ показал, что в ядрах опухолевых клеток и трихомонад хромосомы в полном их значении, как в ядрах нормальных клеток, отсутствуют. Чаще обнаруживался хроматин в цитоплазме ядерных и протоплазме безъядерных клеток в виде глыбок и мелких зерен.

Этот эксперимент стал еще одним косвенным доказательством идентичности опухолевых клеток и трихомонад.

Итак, проведенные эксперименты на опухолевых клетках и трихомонадах человека и животных прямо и косвенно доказали достоверность трихомонадной природы рака, возбудителем которого является паразитический жгутиконосец трихомонада (флагеллата).