Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Официальные материалы к курсу КСЕ.doc
Скачиваний:
13
Добавлен:
14.11.2018
Размер:
871.42 Кб
Скачать

29. Необратимость реальных процессов и концепция энтропии.

Многочисленные опыты показывают, что все тепловые процессы, в отличие от механического движения, необратимы, т.е. для них обратные процессы, при которых реализуются те же тепловые состояния, но только в обратном направлении, практически невозможны. Значит, термодинамические процессы необратимы. Достигнув равновесия, система сама по себе из него не выходит. Значит, все термодинамические процессы, приближающиеся к тепловому равновесию, необратимы. В системе тел, находящихся в термодинамическом равновесии, без внешнего вмешательства невозможны никакие реальные процессы. Необратимость тепловых процессов имеет вероятностный характер. Самопроизвольный переход тела из равновесного состояния в неравновесное не невозможен, а лишь весьма маловероятен. В конечном результате необратимость тепловых процессов обусловливается колоссальностью числа молекул, из которых состоит тело.

Количественной характеристикой теплового состояния системы является термодинамическая вероятность W, равная числу микроскопических способов, с помощью которых это состояние может быть достигнуто. Система, предоставленная самой себе, стремится перейти в состояние с большим значением W. Принято пользоваться не самой вероятностью W, а ее логарифмом, который еще умножается на постоянную Больцмана k: S= k ln W. Определенную таким образом величину S называют энтропией системы. Возрастание энтропии для необратимых процессов есть следствие перехода системы от менее вероятного состояния к более вероятному, при этом состояние равновесия выступает как наиболее вероятное.

Второе начало термодинамики: (закон возрастания энтропии) – для всех происходящих в замкнутой системе тепловых процессов энтропия системы возрастает; максимально возможное значение энтропии замкнутой системы достигается в тепловом равновесии: ΔS >=0.Идеальному случаю - полностью обратимому процессу замкнутой системы - соответствует неизменяющаяся энтропия. Все естественные процессы происходят так, что вероятность состояния возрастает, что означает переход от порядка к хаосу. Значит, энтропия характеризует меру хаоса, которая для всех естественных процессов возрастает. Третье начало термодинамики: (тепловая теорема, сформулированная Нернстом) – при абсолютном нуле температуры энтропия принимает значение, не зависящее от давления, агрегатного состояния и других характеристик в-ва. Такое значение можно положить равным нулю.

30. Энтропия и информация.

Количественной характеристикой теплового состояния системы является термодинамическая вероятность W, равная числу микроскопических способов, с помощью которых это состояние может быть достигнуто. Система, предоставленная самой себе, стремится перейти в состояние с большим значением W. Принято пользоваться не самой вероятностью W, а ее логарифмом, который еще умножается на постоянную Больцмана k: S= k ln W. Определенную таким образом величину S называют энтропией системы. Возрастание энтропии для необратимых процессов есть следствие перехода системы от менее вероятного состояния к более вероятному, при этом состояние равновесия выступает как наиболее вероятное.

Второе начало термодинамики: (закон возрастания энтропии) – для всех происходящих в замкнутой системе тепловых процессов энтропия системы возрастает; максимально возможное значение энтропии замкнутой системы достигается в тепловом равновесии: ΔS >=0.Идеальному случаю - полностью обратимому процессу замкнутой системы - соответствует неизменяющаяся энтропия. Все естественные процессы происходят так, что вероятность состояния возрастает, что означает переход от порядка к хаосу. Значит, энтропия характеризует меру хаоса, которая для всех естественных процессов возрастает. Третье начало термодинамики: (тепловая теорема, сформулированная Нернстом) – при абсолютном нуле температуры энтропия принимает значение, не зависящее от давления, агрегатного состояния и других характеристик в-ва. Такое значение можно положить равным нулю.