
- •Глава 1 Проекции точки.
- •1.2. Задание точки н комплексном чертеже Монжа (эпюр Монжа)
- •1.2.1 Пространственная (или декартовая) система координат. Плоскости проекций
- •1.2.2 Проецирование точки на две плоскости проекций. Четверти пространства
- •1.2.3 Проекции точки на три плоскости проекций. Октанты пространства
- •1.2.4 Точки проекций общего и частного положения.
- •1.3. Обратимость чертежа
- •Глава 2 Проекции прямой .
- •2.1. Проецирование прямой на три плоскости проекции.
- •2.2. Положение прямой относительно плоскости проекций.
- •2.3 Определение натуральной величины отрезка
- •2.4. Следы прямой.
- •2.5. Взаимное положение прямых в пространстве.
- •2.6. Конкурирующие точки.
- •2.7. Определение видимости точки
- •2.8. Теорема о проецировании прямого угла.
- •Глава 3 Проекции плоскости
- •3.1 Способы задания плоскости на эпюре
- •3.2 Следы плоскости
- •3.3 Принадлежность прямой и точки заданной плоскости
- •3.4 Плоскости общего и частного положения
- •3.5 Главные линии плоскости
- •3.6 Построение линии пересечения двух плоскостей
- •3.7. Построение точки пересечения прямой и плоскости
- •3.8 Параллельность прямой и плоскости
- •3.9 Перпендикулярность прямой и плоскости
- •3.10 Параллельность плоскостей
- •3.11 Перпендикулярность плоскостей
- •Примеры позиционных и метрических задач на плоскость
- •Глава 4 Методы преобразования комплексного чертежа (эпюра Монжа)
- •4.1. Четыре основных задачи на преобразование
- •4.2. Метод замены (перемены) плоскостей проекций
- •4.3. Метод плоско-параллельного перемещения
- •4.4. Метод вращения вокруг проецирующей прямой?
- •4.5 Метод вращения вокруг линии уровня
- •4.6. Метод вращения вокруг следов плоскости (совмещение)
- •Глава 5 Многогранники
- •5.1. Задание многогранников на эпюре Монжа (общие положения)
- •5.2. Виды многогранников
- •5.3. Пересечение многогранника плоскостью
- •5.4. Пересечение многогранника прямой
- •5.5. Взаимное пересечение многогранников
- •5.6. Пересечение многогранников с кривой поверхностью
- •5.7. Развертка многогранных поверхностей методом нормального сечения
- •5.8. Развертка многогранных поверхностей методом раскатки
- •5.9. Развертка многогранных поверхностей методом треугольников (триангуляции)
- •Глава 8. Обобщенные позиционные задачи.
- •8.1 Пересечение кривой поверхности плоскостью.
- •8.3 Построение линии пересечения двух поверхностей методом вспомогательных секущих плоскостей (плоскостей посредников) Взаимное пересечение поверхностей
- •8.4 Построение линии пресечения двух поверхностей методом секущих сфер (концентрических сфер посредников)
- •8.5 Особые случаи пересечения поверхностей второго порядка.
- •Глава 10. Касательные плоскости.
- •10.1.Построение плоскости, касательной к кривой поверхности.
- •10.2. Построение очертаний поверхности на комплексном чертеже.
- •Глава 11 Аксонометрические проекции.
- •11.1. Основные понятия и определения.
- •11.3. Треугольник следов и его свойства. Теорема Польке.
- •11.4. Прямоугольная аксонометрия и ее свойства.
- •Построение в изометрической проекции плоских фигур.
- •Построение аксонометрической проекции окружности.
- •Разрез в аксонометрических проекциях.
- •11.5. Способы построения трехмерного чертежа.
- •11.6. Построение теней в аксонометрии.
- •Литература
- •Глава 12 тени в ортогональных проекциях
- •12.1. Геометрические основы теории теней
- •12.2. Построение тени от точки
- •12.3. Построение тени от прямой
- •12.4 Построение тени от плоской фигуры
- •12.5 Метод обратных лучей
- •12.6. Построение теней геометрических тел
- •12.7 Собственные и падающие тени на фасадах зданий
Примеры позиционных и метрических задач на плоскость
Пример 1. В плоскости, заданной треугольником АВС, построить точку D (рис. 3.21).
Решение.
1. Необходимо в данной плоскости провести прямую. Зададим для этого две точки, заведомо лежащие в данной плоскости. Одной из таких точек может быть вершина А(А1;А2) треугольника. Вторую точку Е(Е1;Е2) зададим на стороне ВС. Через одноименные проекции А1 и Е1, А2 и Е2 проведем прямые. Эти прямые являются проекциями прямой. Лежащей в данной плоскости.
2. На построенной прямой АЕ зададим точку D. Для этого построим D1А1Е1 и D2А2Е2. Точка D лежит в заданной плоскости, т.к.к она принадлежит прямой АЕ, лежащей в этой плоскости
Рис. 3.21
Пример 2. Построить линию наибольшего уклона плоскости, заданной параллельными прямыми а(а1; а2) и b(b1; b2) и определить угол между этой плоскостью и горизонтальной плоскостью проекций (рис. 3.22)
Рис. 3.22
Решение
-
Проведем горизонталь h данной плоскости (см. гл.3 рис. 3.3, в). Проекциями этой горизонтали будут прямые h1 и h2.
-
Проведем прямую, перпендикулярную к горизонтальной проекции горизонтали, и отметим точки С1 - пересечения её с h1 D1 – са1. Прямая С1D1 является горизонтальной проекцией линии наибольшего ската.
-
Построим фронтальные проекции С2 и D2. Для этого из С1 и D1 проведем вертикальные линии связи до пересечения соответственно с h2 и а2.
-
Прямая, соединяющая точки С2 и D2, является фронтальной проекцией линии наибольшего уклона.
-
Угол определяем из прямоугольного треугольника D1C1E0, построенного на С 1D1 как на катете. Второй катет D0D1 = E2D2. Искомый угол =D0C1D1
Пример 3. Задана плоскость пересекающимися прямыми АВ и CD. Определить лежит ли прямая KL в этой плоскости.
Рис. 3.23
Решение.
1. Обозначим точки пересечения фронтальных проекций прямых АВ и KL через 12 и прямых CD и KL через 22.
2. Строим их горизонтальные проекции – точки 11 и 22 на горизонтальной проекции (K1L1) прямой KL. Из построения видно, что точки 1(1112) и 2(2122) прямая KL на заданной плоскости не лежат. Следовательно, прямая KL в плоскости не лежит. Решение этой задачи можно начать и с пересечения горизонтальных проекций.
Пример 4. В плоскости, заданной двумя параллельными прямыми АВ и CD, провести фронталь на расстоянии 15 мм от фронтальной плоскости проекций (рис. 3.24)
Рис. 3.24
Решение. Проводим на расстоянии 15 мм от оси проекций параллельную ей горизонтальную проекцию (11-22) фронтали, которая пересекает прямые А1В1 и C1D1 в точках 11 и 22.
Затем находим точки 11 и 22 на прямых А2В2 и C2D2 и проводим через них фронтальную проекцию (1222) фронтали.
Пример 5. Найти прямую пересечения плоскостей Р и Q.
Рис. 3.25
Решение. Плоскость Р и Q пересекаются по прямой общего положения, проходящей через точку-след (М1;М2) пересечения горизонтальных следов плоскостей. Точка-след (N1;N2) пересечения фронтальных следов плоскостей недоступна, т.к. эти следы плоскостей по заданию, в пределах чертежа не пересекаются.
Вместо точки (N1;N2) необходимо найти другую произвольную точку прямой пересечения, общую для заданных плоскостей. Для этого вводим вспомогательную плоскость R, например параллельную П которая, как известно, пересекает каждую из данных плоскостей по горизонтали. На их пересечении получаем вспомогательную точку (К1;К2), общую для данных плоскостей. Найдя эту вторую точку (К1;К2) прямой, проводим её проекцию: горизонтальную – через точки М1 и К1 и фронтальную через точки М2 и К2.
Пример 6. Найти точку пересечения прямой АВ с плоскостью Р (рис. 3.26)
Рис. 3.26
Решение. Обозначим искомую точку через точку К. Так как точка К (К1;К2) лежит на профильно-проецирующей плоскости. То её профильная проекция (К3) должна лежать на профильном следе (Р3) плоскости. Вместе с тем, так как эта же точка лежит и на прямой АВ, то её профильная проекция (К3) должна лежать так же где-то на профильной проекции (А3В3) прямой. Следовательно искомая точка должна лежать на их пересечении. Найдя профильный след плоскости и профильную проекцию прямой, получаем на их пересечении профильную проекцию (К3) искомой точки. Зная профильную проекцию (К3) искомой точки, находим две другие её проекции на одноименных проекциях прямой.
Пример 7. Даны плоскость Р и точка А. Определить расстояние то точки до плоскости (рис. 3.27)
Рис. 3.27
Решение. Опускаем из точки А (А1;А2) перпендикуляр на плоскость Р и находим его основание на этой плоскости, для чего ищем точку К (К1;К2) пересечения перпендикуляра с плоскостью. Имея проекции (А1К1;А2К2) отрезка перпендикуляра, определим его действительную величину методом прямоугольного треугольника.
Пример 8. Даны треугольник АВС и точка К. Определить расстояние между ними. (рис. 3.28)
Рис. 3.28
Решение. Опускаем из заданной точки Е (Е1;Е2) перпендикуляр на плоскость треугольника: К1Е1 перпендикулярно горизонтальной проекции горизонтали (К1Е1С1F1), К2Е2 перпендикулярно фронтальной проекции фронтали (К2Е2А2 D2). Находим точку пересечения перпендикуляра с плоскостью треугольника (К1;К2) , определяем натуральную величину отрезка перпендикуляра (К1Е1;К2Е2) методом прямоугольного треугольника.