
- •Глава 1 Проекции точки.
- •1.2. Задание точки н комплексном чертеже Монжа (эпюр Монжа)
- •1.2.1 Пространственная (или декартовая) система координат. Плоскости проекций
- •1.2.2 Проецирование точки на две плоскости проекций. Четверти пространства
- •1.2.3 Проекции точки на три плоскости проекций. Октанты пространства
- •1.2.4 Точки проекций общего и частного положения.
- •1.3. Обратимость чертежа
- •Глава 2 Проекции прямой .
- •2.1. Проецирование прямой на три плоскости проекции.
- •2.2. Положение прямой относительно плоскости проекций.
- •2.3 Определение натуральной величины отрезка
- •2.4. Следы прямой.
- •2.5. Взаимное положение прямых в пространстве.
- •2.6. Конкурирующие точки.
- •2.7. Определение видимости точки
- •2.8. Теорема о проецировании прямого угла.
- •Глава 3 Проекции плоскости
- •3.1 Способы задания плоскости на эпюре
- •3.2 Следы плоскости
- •3.3 Принадлежность прямой и точки заданной плоскости
- •3.4 Плоскости общего и частного положения
- •3.5 Главные линии плоскости
- •3.6 Построение линии пересечения двух плоскостей
- •3.7. Построение точки пересечения прямой и плоскости
- •3.8 Параллельность прямой и плоскости
- •3.9 Перпендикулярность прямой и плоскости
- •3.10 Параллельность плоскостей
- •3.11 Перпендикулярность плоскостей
- •Примеры позиционных и метрических задач на плоскость
- •Глава 4 Методы преобразования комплексного чертежа (эпюра Монжа)
- •4.1. Четыре основных задачи на преобразование
- •4.2. Метод замены (перемены) плоскостей проекций
- •4.3. Метод плоско-параллельного перемещения
- •4.4. Метод вращения вокруг проецирующей прямой?
- •4.5 Метод вращения вокруг линии уровня
- •4.6. Метод вращения вокруг следов плоскости (совмещение)
- •Глава 5 Многогранники
- •5.1. Задание многогранников на эпюре Монжа (общие положения)
- •5.2. Виды многогранников
- •5.3. Пересечение многогранника плоскостью
- •5.4. Пересечение многогранника прямой
- •5.5. Взаимное пересечение многогранников
- •5.6. Пересечение многогранников с кривой поверхностью
- •5.7. Развертка многогранных поверхностей методом нормального сечения
- •5.8. Развертка многогранных поверхностей методом раскатки
- •5.9. Развертка многогранных поверхностей методом треугольников (триангуляции)
- •Глава 8. Обобщенные позиционные задачи.
- •8.1 Пересечение кривой поверхности плоскостью.
- •8.3 Построение линии пересечения двух поверхностей методом вспомогательных секущих плоскостей (плоскостей посредников) Взаимное пересечение поверхностей
- •8.4 Построение линии пресечения двух поверхностей методом секущих сфер (концентрических сфер посредников)
- •8.5 Особые случаи пересечения поверхностей второго порядка.
- •Глава 10. Касательные плоскости.
- •10.1.Построение плоскости, касательной к кривой поверхности.
- •10.2. Построение очертаний поверхности на комплексном чертеже.
- •Глава 11 Аксонометрические проекции.
- •11.1. Основные понятия и определения.
- •11.3. Треугольник следов и его свойства. Теорема Польке.
- •11.4. Прямоугольная аксонометрия и ее свойства.
- •Построение в изометрической проекции плоских фигур.
- •Построение аксонометрической проекции окружности.
- •Разрез в аксонометрических проекциях.
- •11.5. Способы построения трехмерного чертежа.
- •11.6. Построение теней в аксонометрии.
- •Литература
- •Глава 12 тени в ортогональных проекциях
- •12.1. Геометрические основы теории теней
- •12.2. Построение тени от точки
- •12.3. Построение тени от прямой
- •12.4 Построение тени от плоской фигуры
- •12.5 Метод обратных лучей
- •12.6. Построение теней геометрических тел
- •12.7 Собственные и падающие тени на фасадах зданий
3.7. Построение точки пересечения прямой и плоскости
Прямая линия в пространстве может принадлежать плоскости (этот случай был рассмотрен ранее в пункте 3.4 настоящей главы), а также быть параллельной плоскости или пересекать её. При пересечении прямой линии с плоскостью следует выделить частный случай, когда прямая перпендикулярна плоскости. Первый случай был разобран в пункте 3.4, в котором рассматривалась одна из основных графических операций – построение линий, принадлежащих плоскости.
Рассмотрим случай пересечения прямой линии с плоскостью.
Если прямая не принадлежит плоскости, и не параллельна ей, то она пересекает данную плоскость. Задача на пресечение прямой линии с плоскостью является одной из основных задач начертательной геометрии. Она входит составной частью в решение самых различных задач по всем разделам курса. Решение задач на пересечение прямой и плоскости с поверхностью и взаимное пересечение поверхностей, построение теней в ортогональных проекциях, аксонометрии и перспективе практически сводится к определению точки пересечения прямой с плоскостью или поверхностью.
При решении задач на пересечение прямой с плоскостью следует выделить частный случай. Если плоскость занимает проецирующее положение, то одна проекция точки пересечения определяется в пересечении проекции прямой с проецирующим следом плоскости, а другая проекция строится с помощью линии связи (рис. 3.10.)
Рис. 3.10
а) б)
Рис. 3.11
Если заданная плоскость общего положения, точка пересечения прямой с плоскостью определяется с помощью вспомогательной секущей плоскости.
Для построения точки пересечения прямой линии с плоскостью необходимо (рис. 3.11):
-
провести через прямую АВ вспомогательную проецирующую плоскость Q;
-
построить линию 1-2 пересечения данной плоскости и вспомогательной;
-
определить искомую точку К пересечения данной прямой DЕ с линией пересечения плоскостей 1-2.
Решение этой задачи показано на пространственной модели (рис. 3.12, а) и на комплексном чертеже (рис. 3.12,б). Завершается решение задачи определением видимых участков прямой. Видимость прямой относительно плоскости треугольника определяется путем разбора взаимоположения точек заданной прямой и сторон плоскости треугольника, совпадающих на проекциях (метод конкурирующих точек).
Рис. 3.12
Задача на пресечение прямой с плоскостью решается аналогичным способом и в том случае, когда плоскость задана следами (рис. 3 13). Через прямую АВ проведена горизонтально–проецирующая плоскость Q. Найдена линия пересечения МN плоскости посредника Q с плоскостью заданной Р. Искомая точка пересечения К прямой АВ с плоскостью Р найдена в пересечении заданной прямой с полученной линией пересечения. Видимость участков прямой определена методом конкурирующих точек.
Рис. 3.13.
3.8 Параллельность прямой и плоскости
При решении вопроса параллельности прямой линии и плоскости необходимо опираться на известное положение стереометрии: прямая параллельна плоскости, если она параллельна одной из прямых, лежащих в этой плоскости.
Оценим взаимное положение прямой АВ и плоскости, представленных на рис. 3.14.
Рис. 3.14
Для этого проведем через прямую АВ вспомогательную плоскость Q (QП1).
В данном случае через прямую проведена горизонтально-проецирующая плоскость, горизонтальный след которой сливается с одноименной проекцией прямой А1В1. Далее построены проекции линии пересечения плоскостей 1-2 сравнение которых с проекциями прямой показывает, что прямая АВ не параллельна плоскости треугольника ВСD.
Рис. 3.15
На рис. 3.15 показано построение прямой параллельной заданной плоскости треугольника АВС и проходящей через точку К Через заданную точку в пространстве можно провести бесчисленное множество прямых линий параллельных заданной плоскости. Для получения единственного решения требуется какое-нибудь дополнительное условие. Например, искомая прямая должна быть параллельна плоскости треугольника АВС и параллельна плоскости проекций П1 (дополнительное условие).
Для решения задачи в плоскости треугольника АВС проведена одна из горизонталей и затем через точку К проведена прямая, параллельная этой горизонтали.