- •Редакционный совет: в.И Бахмин, я.М. Бергер, е.Ю. Гениева, г.Г. Дилигенский, в.Д. Шадриков
- •Предисловие
- •Введение в психологическое шкалирование §1. Психофизические шкалы
- •§2. Нольмерное шкалирование
- •§3. Одномерное шкалирование
- •§4. Модель шкалирования Терстоуна
- •§5. Многомерный анализ сложных стимулов
- •§6. Многомерное шкалирование
- •Часть I. Локализация точки на шкале (нольмерное шкалирование) Глава 1. Методы измерения порогов
- •§1. Метод минимальных изменений
- •§2. Метод средней ошибки
- •§3. Метод постоянных раздражителей
- •Результаты эксперимента по определению пространственного порога тактильного восприятия
- •Методические рекомендации по выполнению учебных заданий по теме: "Локализация точки на шкале"
- •Литература
- •Приложение 1. Требования к оформлению отчета по учебному заданию
- •Приложение 2. Таблица для перевода значений р в значения z
- •Глава 2. Методы обнаружения сигнала §1. Общие понятия
- •§2. Метод "Да-Нет"
- •Исходы эксперимента по обнаружению сигнала
- •§ 3. Метод двухальтернативного вынужденного выбора (2авв)
- •§ 4. Метод оценки
- •Теоретические результаты эксперимента с использованием метода оценки
- •Способ расчета р(н) и p(fa) по полученным данным в методе мо
- •Методические рекомендации по выполнению учебных заданий по теме "Методы обнаружения сигнала"
- •Результаты тренировочных серий (задача -обнаруживать q на фоне о, длит. Стимула - 250 мс, мси - 2000 мс)
- •Литература
- •Приложение 1. Дополнительные сведения о критериях принятия решения*
- •Приложение 2. Краткое описание программы yes_no.Exe
- •Фрагмент протокола эксперимента, выводимого программой на экран монитора после окончания серии
- •Часть II. Одномерное шкалирование Глава 1. Метод балльных оценок
- •§ 1. Графические шкалы
- •§ 2. Числовое шкалирование
- •§ 3. Шкалирование по стандартной шкале
- •§ 4. Проблемы, связанные с построением шкал балльных оценок
- •§ 5. Проблемы, связанные с обработкой полученных данных
- •Литература
- •Методические указания по выполнению учебных заданий по теме "Метод балльных оценок"
- •Глава 2. Метод парных сравнений. Модель Терстоуна § 1. Закон сравнительных суждений
- •§2. Процедура измерения
- •§ 3. Упрощенные варианты закона сравнительных суждений
- •§ 4. Процедура решения V варианта закона сравнительных оценок для полной матрицы
- •Матрица частот — f
- •Матрица вероятностей р
- •Матрица z - оценок
- •§5. Процедура решения V варианта закона сравнительных суждений для неполной матрицы исходных данных
- •Литература
- •Методические указания по выполнению учебного задания по теме: "Метод парных сравнений"
- •Глава 3. Методы прямой оценки
- •§ 1. Метод установления заданного отношения
- •Результаты оценки испытуемыми стимула как половины стандартного (по Харперу и Стивенсу, 1948)
- •§2. Метод оценки величины
- •Субъективная шкале запаха амилацетата, разведенного в диэтилфтолате
- •Индивидуальные оценки концентраций пентанола (Кайн, 1968)
- •Скорректированные оценки испытуемых, представленные в табл. 3 (по Энгену)
- •Литература
- •Методические указания по выполнению учебного задания по теме: "Методы прямой оценки"
- •Часть III. Многомерное шкалирование Глава 1. Факторный анализ Введение
- •§ 1. Область применения факторного анализа
- •§ 2. Исходные принципы и предположения
- •§ 3. Основные этапы факторного анализа
- •Использование различных методов факторизации для получения двухфакторного решения
- •Статистические показатели для определения минимального количества факторов
- •§ 4. Дополнительные статистические показатели для оценки результатов факторного анализа
- •Данные описательной статистики для 9 переменных
- •§ 5. Несколько замечании по поводу конфирматорного фа
- •Методические рекомендации по выполнению учебного задания по теме «Факторный анализ»
- •Литература
- •Глава 2. Метрическое и неметрическое многомерное шкалирование
- •§ 1. Основные положения
- •§ 2. Исходные данные. Матрица сходств и различий
- •§ 3. Построение пространственной модели стимулов
- •§4. Построение метрической модели
- •§5. О развитии моделей многомерного шкалирования
- •Литература
- •Методические указания по выполнению учебного задания по теме: "Многомерное шкалирование"
- •Содержание
§ 2. Исходные принципы и предположения
Основные общенаучные идеи, лежащие в основе ФА, достаточно просты и могут быть, по мнению П. Благуша (1989), сформулированы так:
а) "сущность вещей заключена в их простых и вместе с тем многообразных проявлениях, которые могут быть объяснены с помощью комбинации нескольких основных факторов", т.е. за наблюдаемой вариацией достаточно большого количества переменных стоит ограниченное число факторов;
б) "общую сущность наблюдаемых вещей мы постигаем, совершая бесконечные приближения к ней", т.е. поиск факторов — это длительный процесс познания посредством перехода к факторам все более высокого порядка.
Первым основным формально-математическим принципом, лежащим в основе классической модели ФА*, является постулат о линейной зависимости между психологическими характеристиками (наблюдаемыми переменными), с помощью которых оценивается какой-либо объект. Количественно степень этой зависимости (связи) может быть оценена с помощью коэффициента корреляции. Второе основное предположение состоит в том, что эти наблюдаемые переменные (предполагается, что их заведомо избыточное количество) могут быть представлены как линейная комбинация некоторых латентных переменных или факторов. Полагается, что ряд этих факторов являются общими для нескольких переменных, а другие, характерные факторы, специфическим образом связаны только с одной переменной. Поскольку последние ортогональны друг к другу, то, в отличие от общих факторов, они не вносят вклад в корреляцию (ковариацию)** между переменными. Таким образом, математическая модель ФА сходна с обычным уравнением множественной регрессии:
Vi = Ai,1F1 +Ai,2F2 +... +Ai,kFk+U, (1)
где Y — значение i-й переменной, которое выражено в виде линейной комбинации k общих факторов, Аi,k — регрессионные коэффициенты, показывающие вклад каждого из k факторов в данную переменную; F1…k — факторы, общие для всех переменных; U — фактор, характерный только для переменной Vi.
* В данном параграфе мы излагаем наиболее традиционные принципы, лежащие в основе ФА, и принцип линейной зависимости, конечно же, — один из главных. Однако, следует отметить, что в последние годы разрабатываются модели ФА, основанные на более общем предположении — о нелинейной зависимости между наблюдаемыми переменными (Благуш, 1989).
** Поскольку ФА работает как с ковариационными, так и с корреляционными матрицами переменных, то мы без особой необходимости не будем подчеркивать различия между ними.
Уравнение (1) выражает весьма простой смысл: каждая переменная может быть представлена в виде суммы вкладов каждого из общих факторов. С другой стороны, аналогичным образом, каждый из k факторов выражается в виде линейной комбинации наблюдаемых переменных:
Fj = Wj,1*V1 + Wj,2*V2 + … + Wj,p*Vp, (2)
где Wj,i — нагрузки j-гo фактора на i-ю переменную или факторные нагрузки; р — количество переменных.
На рис. 1 факторные нагрузки (w1,1,... w2,6) обозначены различными стрелками, показывающими влияние фактора на конкретную переменную. Переменные vl, v2 и v3 преимущественно связаны с фактором F1, и только фактор F2 имеет небольшую нагрузку на первую переменную; для других трех переменных (v4, v5, v6) общим фактором является F2, и лишь на четвертую переменную F1 имеет незначительную нагрузку. Эмпирические оценки наблюдаемых переменных vl ... v6 представлены в столбцах а, b, с, d, e, f, соответственно. Дугообразная стрелка, соединяющая факторы и коэффициент корреляции над ней, подчеркивают факт ортогональности (некоррелированности, линейной независимости) этих факторов, хотя в общем случае (об этом ниже) это предположение критично лишь на этапе выделения первоначальных факторов, а в дальнейшем, на этапе интерпретации факторного решения, при вращении факторной структуры допускается возможность корреляции между факторами. (Это один из многих парадоксов ФА, связанный с многозначностью получаемого факторного решения, которое не имеет строго однозначного математического обоснования.)
Пользуясь схемой (рис. 1), еще раз обозначим основную задачу ФА: основываясь на эмпирических оценках (а, b, с, d, e, f) исследуемого объекта по каждой из шести переменных-харктеристик (vl ... v6), исследователь пытается объяснить взаимосвязь наблюдаемых переменных влиянием 2-х общих факторов, в которых находят свое отражение эти переменные.