- •Редакционный совет: в.И Бахмин, я.М. Бергер, е.Ю. Гениева, г.Г. Дилигенский, в.Д. Шадриков
- •Предисловие
- •Введение в психологическое шкалирование §1. Психофизические шкалы
- •§2. Нольмерное шкалирование
- •§3. Одномерное шкалирование
- •§4. Модель шкалирования Терстоуна
- •§5. Многомерный анализ сложных стимулов
- •§6. Многомерное шкалирование
- •Часть I. Локализация точки на шкале (нольмерное шкалирование) Глава 1. Методы измерения порогов
- •§1. Метод минимальных изменений
- •§2. Метод средней ошибки
- •§3. Метод постоянных раздражителей
- •Результаты эксперимента по определению пространственного порога тактильного восприятия
- •Методические рекомендации по выполнению учебных заданий по теме: "Локализация точки на шкале"
- •Литература
- •Приложение 1. Требования к оформлению отчета по учебному заданию
- •Приложение 2. Таблица для перевода значений р в значения z
- •Глава 2. Методы обнаружения сигнала §1. Общие понятия
- •§2. Метод "Да-Нет"
- •Исходы эксперимента по обнаружению сигнала
- •§ 3. Метод двухальтернативного вынужденного выбора (2авв)
- •§ 4. Метод оценки
- •Теоретические результаты эксперимента с использованием метода оценки
- •Способ расчета р(н) и p(fa) по полученным данным в методе мо
- •Методические рекомендации по выполнению учебных заданий по теме "Методы обнаружения сигнала"
- •Результаты тренировочных серий (задача -обнаруживать q на фоне о, длит. Стимула - 250 мс, мси - 2000 мс)
- •Литература
- •Приложение 1. Дополнительные сведения о критериях принятия решения*
- •Приложение 2. Краткое описание программы yes_no.Exe
- •Фрагмент протокола эксперимента, выводимого программой на экран монитора после окончания серии
- •Часть II. Одномерное шкалирование Глава 1. Метод балльных оценок
- •§ 1. Графические шкалы
- •§ 2. Числовое шкалирование
- •§ 3. Шкалирование по стандартной шкале
- •§ 4. Проблемы, связанные с построением шкал балльных оценок
- •§ 5. Проблемы, связанные с обработкой полученных данных
- •Литература
- •Методические указания по выполнению учебных заданий по теме "Метод балльных оценок"
- •Глава 2. Метод парных сравнений. Модель Терстоуна § 1. Закон сравнительных суждений
- •§2. Процедура измерения
- •§ 3. Упрощенные варианты закона сравнительных суждений
- •§ 4. Процедура решения V варианта закона сравнительных оценок для полной матрицы
- •Матрица частот — f
- •Матрица вероятностей р
- •Матрица z - оценок
- •§5. Процедура решения V варианта закона сравнительных суждений для неполной матрицы исходных данных
- •Литература
- •Методические указания по выполнению учебного задания по теме: "Метод парных сравнений"
- •Глава 3. Методы прямой оценки
- •§ 1. Метод установления заданного отношения
- •Результаты оценки испытуемыми стимула как половины стандартного (по Харперу и Стивенсу, 1948)
- •§2. Метод оценки величины
- •Субъективная шкале запаха амилацетата, разведенного в диэтилфтолате
- •Индивидуальные оценки концентраций пентанола (Кайн, 1968)
- •Скорректированные оценки испытуемых, представленные в табл. 3 (по Энгену)
- •Литература
- •Методические указания по выполнению учебного задания по теме: "Методы прямой оценки"
- •Часть III. Многомерное шкалирование Глава 1. Факторный анализ Введение
- •§ 1. Область применения факторного анализа
- •§ 2. Исходные принципы и предположения
- •§ 3. Основные этапы факторного анализа
- •Использование различных методов факторизации для получения двухфакторного решения
- •Статистические показатели для определения минимального количества факторов
- •§ 4. Дополнительные статистические показатели для оценки результатов факторного анализа
- •Данные описательной статистики для 9 переменных
- •§ 5. Несколько замечании по поводу конфирматорного фа
- •Методические рекомендации по выполнению учебного задания по теме «Факторный анализ»
- •Литература
- •Глава 2. Метрическое и неметрическое многомерное шкалирование
- •§ 1. Основные положения
- •§ 2. Исходные данные. Матрица сходств и различий
- •§ 3. Построение пространственной модели стимулов
- •§4. Построение метрической модели
- •§5. О развитии моделей многомерного шкалирования
- •Литература
- •Методические указания по выполнению учебного задания по теме: "Многомерное шкалирование"
- •Содержание
§ 1. Область применения факторного анализа
Необходимость применения ФА в психологии как одного из методов многомерного количественного описания (измерения, анализа) наблюдаемых переменных в первую очередь следует из многомерности объектов, изучаемых нашей наукой. Сразу же определим, что под многомерным представлением объекта мы будем понимать результат его оценивания по нескольким различным и существенным для его описания характеристикам-измерениям, т.е. присвоение ему сразу нескольких числовых значений. Из этого вполне естественно следуют два очень важных вопроса: насколько существенны и различны эти используемые характеристики. Первый вопрос связан с всесторонностью и полнотой описания объекта психологического измерения, а второй (в большей степени) — с выбором некоторого минимально разумного количества этих характеристик. Поясним сказанное выше на примере. Чем отличается хороший, профессионально сделанный психологический опросник от многочисленных "полупродуктов-полушуток", во множестве публикуемых в периодической печати для широкой публики или в книгах непрофессионалов-дилетантов? Прежде всего тем, что в первом случае объект психологического измерения (конструкт) описывается разносторонне и полно, и, кроме того, в нем не содержится лишних, не относящихся к делу (т.е. "не работающих" на ту или иную шкалу) вопросов. Таким образом, при использовании методов многомерных измерений психологических характеристик наиболее важны две проблемы — описать объект измерения всесторонне и, в тоже время, компактно. С известной долей обобщения можно сказать, что это одни из основных задач, решаемых ФА.
Понятно, что информативность многомерного описания объекта нашего изучения возрастает с увеличением количества используемых признаков или измерительных шкал. Однако очень трудно выбрать сразу и существенные, и независимые друг от друга характеристики. Этот выбор порой непрост и долог. Как правило, исследователь начинает с заведомо избыточного количества признаков, и в процессе работы (например, по созданию нового опросника или анализу экспериментальных данных) сталкивается с необходимостью адекватной интерпретации большого объема полученных данных и их компактной визуализации. Анализируя полученные данные, исследователь замечает тот факт, что оценки изучаемого объекта, полученные по некоторым шкалам, сходны между собой, а если оценить это сходство количественно и подсчитать коэффициент корреляции, то он может оказаться достаточно высоким. Другими словами, возникает вопрос о том, что многие характеристики (т.е. переменные, по которым производилось измерение нашего объекта), вероятно, в некоторой степени дублируют друг друга, а вся полученная информация в целом избыточна. Внимательный исследователь, даже незнакомый с основами ФА, сразу же может сообразить, что за связанными друг с другом (коррелирующими) переменными, по-видимому, стоит влияние некоторой скрытой, латентной переменной, с помощью которой можно объяснить наблюдаемое сходство полученных оценок. Очень часто эту гипотетическую латентную переменную называют фактором. Приблизительно такая логика заставила Чарлза Спирмена, психолога Оксфордского университета, в ходе анализа результатов тестирования способностей учеников английских школ предположить существование единого, генерального фактора интеллектуального развития человека, влияющего на многочисленные показатели разнообразных интеллектуальных тестов. Таким образом, давно известный метод научного познания — обобщение, — приводит нас к возможности и необходимости выделения факторов как переменных более общего, более высокого порядка. Очень часто обобщение позволяет по-новому взглянуть на полученные данные, заметить те связи между исходными характеристиками (переменными), которые ранее были не очевидны, а после этого выйти на более высокий уровень понимания сущности измеряемого объекта.
Такого рода обобщение (т.е. сокращение размерности полученных данных) дает возможность использовать очень мощное средство научного анализа — графическое представление полученных данных. Понятно, что сокращение размерности результатов многомерного измерения какого-либо объекта до двух-трех позволит исследователю в очень наглядной и компактной форме представить весь объем полученных данных, выйдя за рамки логического анализа массы цифр, собранных в огромную таблицу. Имея в виду важное значение наглядно-образного мышления, трудно переоценить преимущества пространственного (графического) осмысления анализируемых данных. Таким образом, ФА может рассматриваться и как средство компактной визуализации данных.
Выделение в ходе анализа данных общего (для ряда переменных) фактора позволяет решать исследователю еще одну непростую задачу — оценивать некоторую скрытую от непосредственного наблюдения переменную (фактор) опосредованно, косвенно — через ее проявление (влияние) в ряде других, прямо измеряемых переменных. Подобным образом в психодиагностике личности были обнаружены, экстрагированы и измерены многие личностные конструкты, например: классический конструкт Айзенка импульсивность, оцениваемый в тесте EPI по ответам испытуемых на ряд вопросов, с разных сторон отражающих этот конструкт. Более того, ФА позволяет измерять не только прямо ненаблюдаемые (скрытые) переменные, но и оценивать определенные качества, которые могут намеренно скрываться и искажаться испытуемым при прямом их тестировании, однако проявляться (т.е. быть измеренными) косвенно через различные связанные с ними качества, оцениваемые прямо.
В ходе научного исследования ФА может выступать в двух ипостасях: как разведочный (эксплораторный) и как проверочный (конфирматорный) метод анализа данных. В первом случае ФА используется ex post factum, т.е. для анализа уже измеренных в эмпирическом исследовании переменных и, фактически, помогает исследователю их структурировать; на этом этапе совсем не обязательно делать априорные предположения о количестве факторов и их связях с наблюдавшимися переменными. Здесь главное значение ФА — структурировать связи между переменными, помочь сформулировать рабочие гипотезы (пусть иногда и очень умозрительные) о причинах обнаруженных связей. Как правило, такое использование ФА характерно для начальной, ориентировочной стадии работы, когда многое неявное кажется явным, непростое — простым, и наоборот. В отличие от разведочного, конфирматорный ФА используется на более поздних стадиях исследования, когда в рамках какой-либо теории или модели сформулированы четкие гипотезы, связи между переменными и факторами достаточно определены, и исследователь их может прямо указать. Тогда конфирматорный ФА выступает как средство проверки соответствия сформулированной гипотезы полученным эмпирическим данным.
Обобщая вышесказанное, выделим основные цели использования ФА:
1. Понижение размерности числа используемых переменных за счет их объяснения меньшим числом факторов. Обобщение полученных данных.
2. Группировка, структурирование и компактная визуализация полученных данных.
3. Опосредованное, косвенное оценивание изучаемых переменных в случае невозможности или неудобства их прямого измерения.
4. Генерирование новых идей на этапе разведочного анализа. Оценка соответствия эмпирических данных используемой теории на этапе ее подтверждения.