
- •1.Движение электрона в электрических и магнитных полях.
- •3. Основы зонной теории.
- •4. Металлы, диэлектрики.
- •5. Полупроводники, понятие «дырки».
- •6. Примесные полупроводники, уровень Ферми.
- •10. Транзистор. Физическая модель транзистора..
- •11. Технологии изготовления полупроводниковых диодов
- •12. Классификация диодов.
- •17. Статические характеристики транзистора.
- •18. Графоаналитический расчет усилителя на транзисторе.
- •20. Полевые транзисторы.
- •21. Тиристоры, варисторы, термисторы.
- •22. Фоторезисторы фотодиоды
- •23. Усилители, классификация усилителей.
- •24. Обратная связь в усилителе, способы её организации.
- •25. Сведение электрической схемы усилителя к базовой схеме
- •26. Базовая схема усилителя.
- •27. Дифференциальный усилитель.
- •28.Операционный усилитель
- •29. Прямое и инверсное включение оу, расчет Ко.
- •30. Типы оу, параметры, характеристики.
- •31. Рекомендации по включению оу
- •32 Повторитель, инвертор, сумматор на основе оу.
- •33. Дифференциатор, интегратор на основе оу.
- •34. Генераторы синусоидального сигнала, обратная связь, условия генерации.
- •35. Типы генераторов на основе оу, схемные решения.
- •37. Дифференцирующие и интегрирующие электрически цепи.
- •38. Транзисторные ключи, схемные решения.
- •39. Мультивибратор, триггер.
- •40. Блокинг-генератор, генератор пилы.
- •41. Интегральные схемы, базовая логика.
- •42. Комбинационные микросхемы.
- •43. Микросхемы с памятью.
6. Примесные полупроводники, уровень Ферми.
Примесный - полупроводник, электрофизические свойства которого в основном определяются примесями.
Большинство полупроводниковых (п/п) приборов изготовляют на основе примесных полупроводников . Таким образом в рабочем диапазоне температур полупроводникового прибора поставщиками основного количества носителей заряда в полупроводниковом материале должны быть примеси. Поэтому в практике важное значение имеют п/п материалы, у которых ощутимая собственная концентрация носителей заряда появляется при возможно более высокой температуре, т.е. полупроводники с достаточно большой шириной запрещенной зоны.
В элементарных полупроводниках примесями являются чужеродные атомы.
В п/п соединениях примесями могут быть и избыточные атомы химических элементов, входящие в химическую формулу сложного п/п соединения.
Атомы примесей в полупроводниках создают дополнительные энергетические уровни в пределах запрещённой зоны полупроводника. При небольшой концентрации примесей их атомы расположены в полупроводнике на таких больших расстояниях друг от друга, что не взаимодействуют между собой. Поэтому нет расщепления примесных уровней и вероятность непосредственного перехода электронов от одного примесного атома к другому ничтожно мала, т.е. с точки зрения зонной теории ничтожно мала вероятность перехода электрона с одного дискретного примесного уровня на другой.
При достаточной концентрации примесей в результате взаимодействия примесных атомов между собой примесные уровни одного типа расщепляются в энергетическую примесную зону. Примеси могут либо поставлять электроны в зону проводимости полупроводника, либо принимать их с уровней его валентной зоны. Примеси могут быть донорного и акцепторного типа.
Под уровнем Ферми понимаем значение энергии ионизации атома отнесенной к одному электрону.
Все примесные уровни располагающиеся над уровнем Ферми для собственного полупроводника относятся к проводнику n-типа, ниже – относятся к Р – полупроводнику. Энергия соответствующая уровню Ферми принимается равной нулю и отсчитывается вверх для электронов и вниз для дырок.
7. р - п переход. Энергетическая модель. Её объяснение.
Электронно-дырочный переход - основной элемент биполярных приборов, pn - переход создают в кристалле изменением типа его проводимости, путем введения акцепторной и донорной примеси. Когда образуется pn переход, между p и n областями происходит обмен электронами и дырками и энергией так, что между областями устанавливается равновесие, и характеризующий равновесное состояние уровень Ферми становится единым для всей системы.
Суммарное
поле возникает в области контакта двух
проводников.
Возрастание
поля эквивалентно возрастанию высоты
потенциального барьера.
Области, находящиеся на значительном удалении от места контакта p и n областей, не подвержены влиянию pn перехода.Таким образом, условия сохранения свойств отдельных материалов и единства уровня Ферми для всей системы приводят к появлению скачка в области pn перехода. Этот скачок соответствует возникновению потенциального барьера, который препятствует переходу основных носителей в потенциальную область (дырок из p в n область и электронов из n в p область).
8. р - п переход. Физическая модель.
Электронно-дырочный переход - основной элемент биполярных приборов, pn - переход создают в кристалле изменением типа его проводимости, путем введения акцепторной и донорной примеси. Когда образуется pn переход, между p и n областями происходит обмен электронами и дырками и энергией так, что между областями устанавливается равновесие, и характеризующий равновесное состояние уровень Ферми становится единым для всей системы.
Суммарное
поле возникает в области контакта двух
проводников.
Возрастание
поля эквивалентно возрастанию высоты
потенциального барьера.
Области, находящиеся на значительном удалении от места контакта p и n областей, не подвержены влиянию pn перехода.Таким образом, условия сохранения свойств отдельных материалов и единства уровня Ферми для всей системы приводят к появлению скачка в области pn перехода. Этот скачок соответствует возникновению потенциального барьера, который препятствует переходу основных носителей в потенциальную область (дырок из p в n область и электронов из n в p область)
9. р — п переход в прямом и обратном включениях. ВАХ, Rg=f(Ug), Cg=f(Ug).
Электронно-дырочный переход - основной элемент биполярных приборов, pn - переход создают в кристалле изменением типа его проводимости, путем введения акцепторной и донорной примеси. Когда образуется pn переход, между p и n областями происходит обмен электронами и дырками и энергией так, что между областями устанавливается равновесие, и характеризующий равновесное состояние уровень Ферми становится единым для всей системы.
1. Прямое включение р-n перехода
2. Обратное включение р-n перехода
Транзистор - полупроводниковый прибор для усиления, генерирования и преобразования электрических колебаний, выполненный на основе монокристаллического полупроводника, содержащего не менее трех областей с различной - электронной (n) и дырочной (p) - проводимостью. По физической структуре и механизму управления током различают транзисторы биполярные (чаще называют просто транзисторами) и полевые транзисторы. В первых, содержащих два или более электронно-дырочных перехода, носителями заряда служат как электроны, так и дырки, во вторых - либо электроны, либо дырки. Термин "транзистор" нередко используют для обозначения портативных радиовещательных приемников на полупроводниковых приборах.