Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоргалка / Элементы электронных устройств.doc
Скачиваний:
75
Добавлен:
12.02.2014
Размер:
162.3 Кб
Скачать
  1. Элементы электронных устройств. Закон Ома.

Простейшие элементы электронных устройств, это:

1) Конденсатор – устройство, способное накапливать энергию в электрическом поле.

Ток протекающий через конденсатор, пропорционален изменению напряжения в единицу времени.

2) Дроссель или катушка индуктивности – дроссель обладает так же способностью накапливать энергию, но не в электрическом, а в магнитном поле. Ведёт себя подобно конденсатору, за исключением того, что рассматривать нужно не напряжение, а ток.

Если подключить параллельно дроссель и конденсатор то получится колебательный контур.

3) Диод (p-n переход) – двухэлектродный электронный прибор, обладает различной проводимостью в зависимости от направления электрического тока

P имеет электронную проводимость (лидирована донорной примесью)

N имеет дырочную проводимость (лидирована акценнторной примесью)

Различают несколько разновидностей диодов:

  • стабилитрон

  • варикап

  • фото и светодиоды

4) Резистор — пассивный элемент электрической цепи, в идеале характеризуемый только сопротивлением электрическому току, то есть для идеального резистора в любой момент времени должен выполняться закон Ома.

Закон Ома гласит, что сила тока равна отношению напряжения к сопротивлению (I=U/R)

а) Напряжение – это разность потенциалов.

б) Сопротивление – величина обратно пропорциональная проводимости.

Напряжение измеряется в Вольтах, сопротивление – в Омах.

  1. Пассивные схемы. Резистивный делитель.

Делитель напряжения — устройство для деления постоянного или переменного напряжения.

Строится на основе активных, реактивных или нелинейных сопротивлений.

1) Делитель. В делителе сопротивления включаются последовательно.

Выходным напряжением является напряжение на отдельном участке цепи делителя.

2) Плечо. Участки, расположенные между напряжением питания и точкой снятия выходного напряжения называют плечами делителя.

а) Плечо нижнее. Плечо между выходом и нулевым потенциалом питания обычно называют нижним.

б) Плечо верхнее. Другое при этом называют верхним. В любом делителе два плеча.

3) Резисторный делитель. Делитель напряжения, построенный исключительно на активных сопротивлениях, называется резистивным делителем напряжения. Коэффициент деления таких делителей не зависит от частоты приложенного напряжения.

Делители, содержащие хотя бы одно реактивное сопротивление, делят напряжение в зависимости от частоты.

Простейший резистивный делитель напряжения представляет собой два последовательно включённых резистора R1 и R2, подключённых к источнику напряжения U.

  1. Пассивные фильтры. Фнч.

1) Пассивный фильтр — электронный фильтр, состоящий только из пассивных компонент, таких как, к примеру, конденсаторы и резисторы.

Пассивные фильтры не требуют никакого источника энергии для своего функционирования.

В отличие от активных фильтров в пассивных фильтрах не происходит усиления сигнала по мощности. Практически всегда пассивные фильтры являются линейными.

2) Использование. Пассивные фильтры используются повсеместно в радио- и электронной аппаратуре, например в акустических системах, источниках бесперебойного питания и т. д.

3) Фильтр нижних частот (ФНЧ) — электронный или любой другой фильтр, эффективно пропускающий частотный спектр сигнала ниже некоторой частоты (частоты среза), и уменьшающий (или подавляющий) частоты сигнала выше этой частоты.

Степень подавления каждой частоты зависит от вида фильтра.

3) Отличие от ФВЧ. В отличие от него, фильтр высоких частот пропускает частоты сигнала выше частоты среза, подавляя низкие частоты.

4) Термины «высокие частоты» и «низкие частоты» в применении к фильтрам относительны и зависят от выбранной структуры и параметров фильтра.

5) Идеальный фильтр нижних частот полностью подавляет все частоты входного сигнала выше частоты среза и пропускает без изменений все частоты ниже частоты среза. Переходной зоны между частотами полосы подавления и полосы пропускания не существует. Идеальный фильтр нижних частот может быть реализован лишь теоретически