
- •Министерство образования и науки
- •Федеральное агентство по образованию
- •Иркутский государственный технический университет
- •Иркутск 2009
- •Оглавление
- •Требования к результатам лабораторных работ по дисциплине «Химия»
- •Лабораторная работа 1 классы неорганических соединений
- •Выполнение работы
- •Опыт 2. Получение и свойства кислотных оксидов
- •Опыт 3. Взаимодействие амфотерных оксидов с кислотами и щелочами
- •Опыт 4. Получение и свойства оснований
- •Опыт 5. Получение основных солей
- •Лабораторная работа 2 определение молярной массы эквивалентов цинка Теоретическое введение
- •Выполнение работы
- •Данные опыта и результаты расчетов
- •Давление насыщенного водяного пара при различных температурах
- •Лабораторная работа 3 определение теплоты реакции нейтрализации Теоретическое введение
- •Выполнение работы
- •Лабораторная работа 4 скорость химической реакции Теоретическое введение
- •Выполнение работы
- •Опыт 1. Зависимость скорости реакции от концентрации реагирующих веществ
- •Опыт 2. Зависимость скорости реакции от температуры
- •Лабораторная работа 5 химическое равновесие и его смещение Теоретическое введение
- •Выполнение работы
- •Опыт 1. Влияние концентрации реагирующих веществ
- •На химическое равновесие
- •Для опыта удобно воспользоваться реакцией
- •Опыт 2. Влияние температуры на химическое равновесие
- •Требования к результатам опыта:
- •Лабораторная работа 6 реакции в растворах электролитов Теоретическое введение
- •Выполнение работы Опыт 1. Сравнение химической активности кислот
- •Требования к результатам опыта:
- •Требование к результатам опыта:
- •Требования к результатам опыта:
- •Требование к результатам опыта:
- •Требования к результатам опыта:
- •Лабораторная работа 7 гидролиз солей Теоретическое введение
- •Выполнение работы Опыт 1. Реакция среды в растворах различных солей
- •Требования к результатам опыта:
- •Опыт 2. Смещение равновесия гидролиза при разбавлении раствора
- •Требования к результатам опыта:
- •Опыт 3. Смещение равновесия гидролиза при изменении температуры
- •Требования к результатам опыта:
- •Опыт 4. Реакции обмена, сопровождаемые гидролизом
- •Требования к результатам опыта:
- •Лабораторная работа 8 окислительно-восстановительные реакции Теоретическое введение
- •П роцесс окисления
- •Выполнение работы Опыт 1. Влияние среды на окислительно-восстановительные реакции
- •Опыт 2. Окислительно-восстановительная двойственность нитрита калия
- •Опыт 3. Реакция диспропорционирования
- •Опыт 4. Внутримолекулярная реакция
- •Лабораторная работа 9 коррозия металлов Теоретическое введение
- •Выполнение работы Опыт 1. Влияние образования гальванической пары на процесс растворения металла в кислоте
- •Опыт 2. Роль защитной пленки в ослаблении коррозии
- •Опыт 3. Защитные свойства металлических покрытий
- •Лабораторная работа 10 электролиз Теоретическое введение
- •Выполнение работы Опыт 1. Электролиз раствора иодида калия
- •Требования к результатам опыта:
- •Требования к результатам опыта:
- •Требования к результатам опыта:
Выполнение работы Опыт 1. Влияние образования гальванической пары на процесс растворения металла в кислоте
В пробирку налейте раствор разбавленной соляной кислоты и бросьте в него кусочек цинка. В этот раствор поместите медную проволоку, не дотрагиваясь до кусочка цинка. Выделение водорода на меди не происходит (почему?). Введите медную проволоку глубже, до соприкосновения с цинком. На поверхности меди появляются пузырьки водорода.
Требование к результату опыта:
1. Напишите уравнение реакции взаимодействия цинка с соляной кислотой.
2. Составьте схему гальванической пары, возникающей при контакте цинка с медью. Напишите уравнения электродных реакций.
3. Сделайте вывод, как влияет образование гальванопары на процесс растворения цинка в кислоте.
Опыт 2. Роль защитной пленки в ослаблении коррозии
Тщательно очистите кусочек алюминия от оксидной пленки и опустите в раствор нитрата ртути Hg(NO3)2. Алюминий как более активный металл вытесняет ртуть и образует с ней амальгаму (сплав алюминия с ртутью), препятствующую возникновению защитной пленки на поверхности алюминия.
Амальгамированный алюминий промойте водой и оставьте на воздухе. Через некоторое время наблюдайте образование продукта коррозии – рыхлых хлопьев гидроксида алюминия.
Требование к результату опыта:
-
Напишите уравнение реакции взаимодействия алюминия с Hg(NO3)2.
2. Составьте схему гальванопары (металлы – Al, Hg, электролит – Н2О + О2), напишите уравнения анодного и катодного процессов и токообразующей реакции. Укажите продукт коррозии алюминия.
3. Сделайте вывод о роли защитной пленки в ослаблении коррозии.
Опыт 3. Защитные свойства металлических покрытий
Налейте в пробирку 2-3 мл раствора сульфата железа (II) FeSO4 и прибавьте несколько капель гексацианоферрата (III) калия K3[Fe(CN)6], который является реактивом на катион Fe2+. Наблюдайте образование синего осадка KFe[Fe(CN)6].
В две пробирки налейте по 2-3 мл раствора серной кислоты и по две капли раствора K3[Fe(CN)6]. В одну из пробирок опустите полоску оцинкованного железа, в другую – луженого железа. Через несколько минут в одной из пробирок (какой?) наблюдается интенсивное синее окрашивание.
Требование к результату опыта:
1. Составьте уравнение качественной реакции на ион Fe2+:
FeSO4 + Fe3[Fe(CN)6]2 =
2. Составьте схемы образующихся гальванопар (Fe – Zn; Fe – Sn) в кислой среде и уравнения реакций, происходящих на электродах.
3. Сделайте вывод о коррозии металлов в случае нарушения анодного и катодного покрытия.
Лабораторная работа 10 электролиз Теоретическое введение
Электролизом называется совокупность процессов, протекающих при прохождении постоянного электрического тока через систему, состоящую из двух электродов и расплава или раствора электролита.
Если в раствор электролита погрузить электроды и подключить их к внешнему источнику постоянного тока, то ионы в растворе получают направленное движение. К аноду (положительному электроду) движутся анионы (кислотные остатки, OH‾). К катоду (отрицательному электроду) движутся катионы (Мn+, H+). Молекулы воды сильно полярны и поэтому могут притягиваться и к катоду и к аноду.
У анода восстановитель отдает электроны (в сеть) и окисляется. У катода окислитель присоединяет электроны (из сети) и восстанавливается.
На катоде в первую очередь восстанавливаются катионы, имеющие наибольшее значение электродного потенциала. Металлы, стоящие в начале ряда напряжения по алюминий включительно, на катоде из водных растворов не выделяются. В этом случае на катоде разряжается вода:
2H2O + 2e → H2 + 2OH‾
В случае, когда катионы металлов расположены в ряду напряжений между алюминием и водородом, они могут восстанавливаться на катоде одновременно с молекулами воды.
Катионы металлов, которые в ряду напряжений находятся за водородом, при электролизе практически полностью восстанавливаются на катоде и выделяются в виде металла.
На аноде в первую очередь окисляются анионы с наименьшим значением электродного потенциала. Различают электролиз с нерастворимым (инертным) и растворимым (активным) анодами. Инертным называется анод, материал которого в ходе электролиза не окисляется (графит, платиновые металлы, титан). Активным называется анод, материал которого может окисляться в ходе электролиза.
На инертном аноде при электролизе растворов электролитов с кислородсодержащими анионами (SO42-, PO43-, NO3‾), а также фторид-ионами F‾ на аноде происходит электрохимическое окисление воды:
2H2O - 4e → 4H+ + O2
Если анионы электролита бескислородны (Cl‾, Br‾, I‾, S2-), то они и разряжаются на аноде в ходе электролиза. Активный (растворимый) анод при электролизе окисляется - переходит в раствор в виде ионов.
Рассмотрим несколько случаев электролиза водных растворов солей.
Э л е к т р о л и з р а с т в о р а CuCl2 c и н е р т н ы м а н о д о м
Медь в ряду напряжений расположена после водорода, поэтому у катода будет происходить разряд ионов Cu2+ и выделение металлической меди. У анода будут окисляться хлорид-ионы.
Схема электролиза раствора хлорида меди (II)
CuCl2 = Cu2+ + 2Cl‾
Катод ← Cu2+, H2O Анод ← Cl‾, H2O
Cu2+ + 2e → Cu0 2Cl‾ - 2e → Cl2
Э л е к т р о л и з р а с т в о р а KNO3 с и н е р т н ы м а н о д о м
Поскольку калий в ряду напряжений стоит значительно раньше водорода, то катионы K+ не будут восстанавливаться на катоде. Кислородсодержащие анионы NO3‾ не будут окисляться на аноде. В этом случае на катоде и аноде восстанавливаются и окисляются молекулы воды. При этом в катодном пространстве будут накапливаться ионы OH‾, образующие с ионами K+ щелочь KOH, а в анодном пространстве накапливаются ионы H+, образующие с ионами NO3‾ кислоту HNO3.
Схема электролиза нитрата калия
KNO3 = K+ + NO3‾
Катод ← K+, H2O Анод ← NO3‾, H2O
2H2O + 2e → H2 + 2OH‾ 2H2O - 4e → O2 + 4H+
K+ + OH‾ → KOH H+ + NO3- → HNO3
Э л е к т р о л и з р а с т в о р а NiSO4 с н и к е л е в ы м а н о д о м
В этом случае сам анод окисляется, а на катоде процесс протекает так же, как и при электролизе растворов с инертным анодом.
Схема электролиза сульфата никеля
Катод ← Ni2+, H2O Анод никелевый ← SO42-, H2O
Ni2+ + 2e → Ni0 Ni0 – 2e → Ni2+