
- •Цвет меди и её соединений
- •Электропроводимость
- •Кристаллическая решетка меди
- •Окончание табл. 1
- •Химические свойства меди
- •Отношение к кислороду
- •Взаимодействие с водой
- •Получение меди
- •1. Метод электролиза
- •2. Металлотермический метод получения
- •3. Пирометаллургический способ получения меди
- •Опыт 1 Получение меди электролизом раствора. Определение электрохимического и химического эквивалентов меди
- •Теоретическая часть Никель Физические и химические свойства
- •Получение никеля
- •Опыт 2 Получение никелевого покрытия методом электроосаждения
- •Экспериментальная часть
- •Домашнее задание к лабораторной работе
- •Лабораторная работа № 2 физико-химические свойства полимерных материалов
- •Теоретическая часть Высокомолекулярные соединения
- •Продолжение табл. 1
- •Окончание табл. 1
- •Специальные добавки в пластмассы
- •Отношение волокон к реагентам
- •Окончание табл. 3
- •Полимеры классифицируют по следующим признакам.
- •Экспериментальная часть Опыт 1 Свойства полиэтилена (пэ) и полистирола (пс)
- •Опыт 2 Свойства поливинилхлорида (пвх)
- •Опыт 3 Свойства полиметилметакрилата (пмма)
- •Опыт 4 Свойства капрона
- •Физико-химические свойства полимерных материалов
- •Лабораторная работа № 3 получение стекол
- •Теоретическая часть Неорганические диэлектрики
- •Керамика
- •Установочная керамика
- •Основные свойства установочной радиокерамики
- •Основные свойства конденсаторной керамики
- •Сегнетокерамика
- •Вакуумная керамика
- •Жаростойкая керамика
- •Свойства нагревостойкой керамики
- •Основные физические, механические, электрические и химические свойства стекол
- •Химический состав некоторых промышленных стекол в весовых %
- •Опыт 1 Получение легкоплавких силикатных стекол
- •Окончание таблицы
- •Домашнее задание к лабораторной работе
- •Шкала коррозионной стойкости металлов по гост 5272-50
- •Экспериментальная часть
- •Определение скорости коррозии
- •Примечание
- •Диапазон сопротивлений
- •Опыт 1 Влияние pH среды на скорость коррозии железа. Измерение скорости коррозии
- •Гальванические покрытия
- •Подготовка поверхности
- •Экспериментальная часть
- •Определение никеля
- •Защита от коррозии Опыт 2 Скорость коррозии луженого железа в кислой среде
- •Опыт 3 Анодное и катодное покрытие для железа
- •Опыт 4 Влияние ингибиторов
- •Контрольные вопросы
- •Домашнее задание к лабораторной работе
- •Приложение 1
- •Приложение 2 Химия радиоматериалов Вариант 1
- •Химия радиоматериалов Вариант 2
- •Химия радиоматериалов Вариант 3
- •Химия радиоматериалов Вариант 4
- •Приложение 3 План ргр
- •Варианты
- •Приложение 4
- •Список литературы
- •Химия радиоматериалов сборник лабораторных работ и домашних заданий
- •6 30092, Г. Новосибирск, пр. К. Маркса, 20
Получение никеля
Около 80 % никеля от общего его производства получают из сульфидных медно-никелевых руд. После селективного обогащения методом флотации из руды выделяют медный, никелевый и пирротиновый концентраты. Никелевый рудный концентрат в смеси с флюсами плавят в электрических шахтах или отражательных печах с целью отделения пустой породы и извлечения никеля в сульфидный расплав (штейн), содержащий 10 – 15 % Ni. Обычно электроплавке предшествуют частичный окислительный обжиг и окускование концентрата. Наряду с Ni в штейн переходят часть Fe, Со и практически полностью Сu и благородные металлы. После отделения Fe окислением (продувкой жидкого штейна в конвертерах) получают сплав сульфидов Cu и Ni – файнштейн, который медленно охлаждают, тонко измельчают и направляют на флотацию для разделения Cu, и Ni. Никелевый концентрат обжигают в кипящем слое до NiO. Металл получают восстановлением NiO в электрических дуговых печах. Из чернового никеля отливают аноды и рафинируют электролитически. Содержание примесей в электролитном никеле 0,01 %. Для разделения Cu и Ni используют также карбонильный процесс, основанный на обратимости реакции:
Ni + 4CO = Ni (CO)4 .
Получение карбонила проводят при давлении 100…200 атм. и при температуре 200…250 °С, а его разложение – без доступа воздуха при атмосферном давлении около 200 атм. Разложение Ni (CO)4 используют также для получения никелевых покрытий и изготовления различных изделий (разложение на нагретой матрице). В современных «автогенных» процессах плавка осуществляется за счёт тепла, выделяющегося при окислении сульфидов воздухом, обогащенным кислородом. Это позволяет отказаться от углеродистого топлива, получить газы, богатые SO2, пригодные для производства серной кислоты или элементарной серы, а также резко повысить экономичность процесса. Наиболее совершенно и перспективно окисление жидких сульфидов. Всё более распространяются процессы, основанные на обработке никелевых концентратов растворами кислот или аммиака в присутствии кислорода при повышенных температурах и давлении (автоклавные процессы). Обычно никель переводят в раствор, из которого выделяют его в виде богатого сульфидного концентрата или металлического порошка (восстановлением водородом под давлением). Из силикатных (окисленных) руд никель также может быть сконцентрирован в штейне при введении в шихту плавки флюсов – гипса или пирита. Восстановительно-сульфидирующую плавку проводят обычно в шахтных печах; образующийся штейн содержит 16…20 % Ni, 16…18 % S, остальное – Fe.
Технология извлечения никеля из штейна аналогична описанной выше, за исключением того, что операция отделения Cu часто выпадает. При малом содержании в окисленных рудах кобальта их целесообразно подвергать восстановительной плавке с получением ферроникеля, направляемого на производство стали. Для извлечения никеля из окисленных руд применяют также гидрометаллургические методы – аммиачное выщелачивание предварительно восстановленной руды, сернокислотное автоклавное выщелачивание.