- •В. I. Бондар
- •Введение.
- •Глава I. Химическая термодинамика.
- •1. Основные понятия и величины.
- •2. Первое начало термодинамики.
- •3. Применение первого начала к характеристике идеальных термодинамических процессов.
- •4. Вычисление работы идеальных термодинамических процессов.
- •V1 до объема v2 при различных условиях.
- •Глава II. Теплоемкость.
- •Формы выражения теплоемкости.
- •2. Теплоемкость идеального газа.
- •3. Теплоемкость твердых тел.
- •4. Правило Неймана - Коппа.
- •5. Температурная зависимость теплоемкости.
- •6. Квантовая теория теплоемкости
- •Глава III. Применение первого начала к химическим процессам.
- •Термохимия – раздел термодинамики.
- •2. Связь тепловых эффектов химических реакций при постоянном объеме (qv) и давлении (qp).
- •3. Закон Гесса.
- •4. Следствия из закона Гесса.
- •5. Зависимость теплового эффекта химической реакции от температуры (уравнение Кирхгофа).
- •Глава IV. Второе начало термодинамики.
- •Содержание второго начала термодинамики.
- •2. Обратимые и необратимые процессы.
- •3. Коэффициент полезного действия тепловой машины. Цикл Карно.
- •4. Работа холодильника (теплового насоса).
- •5. Измерение рассеивания энергии. Энтропия.
- •6. Термодинамический взгляд на энтропию.
- •7. Вычисление энтропии.
- •8. Направление протекания процессов в изолированных системах и термодинамические условия равновесия.
- •9. Энергия Гиббса. Энергия Гельмгольца.
- •10. Направление протекания процессов в неизолированных системах и термодинамические условия равновесия.
- •11. Уравнение Гиббса - Гельмгольца.
- •12. Применение второго закона термодинамики к фазовым переходам. Уравнение Клаузиуса - Клапейрона.
- •13. Химическое равновесие. Закон действующих масс и константа равновесия.
- •14. Различные формы констант равновесия и связь между ними.
- •15. Уравнение изотермы химической реакции. Химическое сродство.
- •16. Направление реакций и условие равновесия.
- •17. Зависимость константы равновесия от температуры и давления.
- •18. Равновесие в гетерогенных системах.
- •19. Термическая диссоциация.
- •Глава V. Третий закон термодинамики.
- •Недостаточность I и II законов термодинамики для расчета химического сродства.
- •2. Тепловая теорема Нернста.
- •3. Следствия из тепловой теоремы Нернста.
- •4. Расчет абсолютных значений энтропии.
- •5. Применение таблиц термодинамических функций для расчетов равновесий.
- •Глава VI. Правило фаз.
- •1. Основные понятия и определения.
- •2. Уравнение правила фаз.
- •3. Геометрический образ уравнения состояния.
- •4. Однокомпонентные системы.
- •5. Двухкомпонентные системы.
- •5.1. Системы с неограниченной растворимостью
- •5.2. Системы с неограниченной растворимостью компонентов в жидком состоянии и ограниченной в твердом.
- •6. Трехкомпонентные системы.
- •VII Растворы.
- •1. Общая характеристика растворов и их классификация.
- •2. Закон Рауля.
- •3. Температура замерзания и кипения разбавленных растворов (следствия из закона Рауля).
- •4. Осмотическое давление растворов.
- •5. Закон Генри.
- •6. Закон распределения.
- •7. Парциальные молярные характеристики компонентов раствора.
- •8. Химический потенциал.
- •9. Термодинамика неидеальных растворов.
- •Глава VIII. Теория электролитов.
- •1. Растворы электролитов.
- •2. Теория электролитической диссоциации.
- •3. Сильные и слабые электролиты.
- •4. Электропроводность растворов электролитов.
- •5. Подвижность и числа переноса ионов.
- •Глава IX. Гальванические элементы.
- •1. Возникновение электродвижущих сил.
- •2. Термодинамика гальванического элемента.
- •3. Электродные потенциалы.
- •4. Классификация электродов и гальванических элементов.
- •Глава X. Кинетика гомогенных химических реакций.
- •1. Скорость химической реакции.
- •2. Молекулярность и порядок химической реакции.
- •3. Методы определения порядка химических реакций.
- •4. Сложные реакции.
- •5. Влияние температуры на скорость химических реакций. Энергия активации.
- •6. Теория активных столкновений.
- •7. Теория переходного состояния.
- •XI. Гетерогенные процессы.
- •Глава XII. Цепные реакции.
- •Глава XIII. Поверхностные явления.
2. Связь тепловых эффектов химических реакций при постоянном объеме (qv) и давлении (qp).
Если химическая реакция протекает в условиях постоянства объема системы, то работа противных сил внешнего давления равняется нулю.
Согласно уравнению первого начала термодинамики в условиях V = const:
qv
=
U
= U2 – U1.
(3.3)
Принимая термохимические обозначения:
QV
= - qv
= -
U.
(3.4)
То есть тепловой эффект химической реакции в условиях постоянства объема системы равен убыли внутренней энергии системы
Если химическая реакция происходит при постоянном давлении, то системой производится работа против внешних сил. В этом случае:
qр
=
U
+ А.
(3.5)
или
QP
= -qp
= -
U
– А = - (U2 – U1)
– p(V2
– V1) = (U1
+ pV1) – (U2
+ pV2) = H1
– H2 = -
H,
(3.6)
т. е. тепловой эффект химической реакции при постоянном давлении равен убыли энтальпии системы.
Далее:
QP
– QV
= -
H
– (-
U)
= -
H
+
U
= -p
V.
(3.7)
Из уравнения состояния идеальных газов:
р
V
= -
nRT.
(3.8)
Тогда окончательно:
QP
– QV
= -
nRT,
(3.9)
где
nRT
определяет величину работы, совершаемую
системой за счет изменения числа молей
газообразных участников реакции.
Например:
CO + H2O = CO2 + H2, (3.10)
где
n
= 0 и QP
= QV.
3H2 + N2 = 2NH3, (3.11)
где
n
= -2 и QP
> QV.
2C + O2 = 2CO, (3.12)
где
n
= 1 и QP
< QV.
Очевидно,
что в системах, состоящих только из
жидких или твердых веществ
n
= 0 и QP
= QV.
3. Закон Гесса.
В основе термохимии лежит закон, согласно которому тепловой эффект реакции не зависит от пути этой реакции, а определяется видом и состоянием исходных и конечных продуктов реакции.
Гесс Герман Иванович (1802 – 1850 г. г.) – русский химик, академик Петербуржской Академии наук.
Существо закона вытекает из уравнения первого начала термодинамики:
QV
= -
V,
а QP
= -
H.
U и Н – функции состояния, поэтому QV и QP также функции состояния системы.
Иллюстрация закона Гесса.
C + O2 = CO2 + Q1, (3.13)
есть первый вариант реакции в системе.
C
+
O2
= CO + Q2,
CО
+
O2
= CO2
+ Q3,
(3.14)
второй возможный вариант реакции.
Так из одинакового исходного состояния образуется одинаковое для рассмотренных вариантов конечное состояние, то:
Q1 = Q2 + Q3. (3.15)
Закон Гесса имеет огромное практическое значение. С его помощью устанавливаются значения тепловых эффектов реакций, экспериментальное определение которых затруднительно.
Для этих целей широко используются следствия из закона Гесса.
